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SECTION 1

GENERAL

1.1 INTRODUCTION

This volume contains the final report for the Application of Redundancy Study, one of four

studies comprising the Voyager Phase IA, Task C activity performed by the General

Electric Company for the Jet Propulsion Laboratory under JPL Contract Number 951112.

This report covers the activity of the entire study, encompassing the period from 1 April

1966 through 31 July 1967.

Readers who are interested in an overview of the Application of Redundancy final report are

referred to Section 4 of Volume 1 of this series, in which the redundancy final report is

summarized in approximately 5% of the length of this volume. By intent, however, the

abridgement is lacking in supporting depth and detail.

1.2 STUDY OBJECTIVES

The broad objective of the Application of Redundancy Study was to investigate the manner

in which redundancy could be applied to Voyager at the mission and spacecraft system level,

and the practical extent of such redundancy.

Redundancy at the mission level is interpreted to imply and involve the number and types of

systems which should be employed at a given launch opportunity, with particular reference

to the number and types of launch vehicles, spacecraft, and capsules. During the course of

this study, the capsule system was redefined as two systems: the capsule bus system and

the surface laboratory system. It was felt, however, that recognizing the subdivision at

that point would not appreciably aid the study, and accordingly, the capsule system as defined

in this volume includes both the bus and the surface laboratory.

Redundancy at the system level involves the number and types of hardware elements (i. e.,

black boxes or components) which should comprise the spacecraft system. All types of
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redundancy were considered to be within the scope of the study, including block, multi-

channel, standby and functional redundancy. Redundancy below the black box level (i. e.,

the piece-part level) was not considered, except as required to determine the performance

characteristics of the black box under consideration.

1.3 STUDY ORGANIZATION

To accomplish the objectives of the Application of Redundancy Study, activity was divided

into three major areas of endeavor, as suggested in Figure 1-1:

a. Mission and System Definition

Definition of the Voyager mission profile and the systems comprising potential

mission configurations. Detailed definition of the Voyager spacecraft system.

b. Selection of Spacecraft System Redundancy

The development of techniques for the selection of redundancy within the Voyager

spacecraft system. Recommendation of a typical allocation of such redundancy.

SELECT_N OF

SPA(

CRAFT SYSTEM

REDUNDANCY

VOYAGER

MISSION AND

SYSTEM

DE FI NI TION

Figure 1-1. Application of Redundancy Study Organization
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c. Selection of Voyager Mission Configurations

The development of techniques for the selection of the initial Voyager mission

configuration and the probable sequence of configurations to follow the initial

choice. Recommendation of a typical project sequence of mission configurations.

For detailed management of the Application of Redundancy Task, these three major areas

of endeavor were further divided into a total of nine subtasks, as follows:

1.3.1 MISSION AND SYSTEM DEFINITION

a.

bo

1.3.2

a.

bo

Mission and System Definition - Definition of the Voyager mission profile and

the role of the Voyager spacecraft system therein via the medium of functional

flow diagrams. Definition of nominal and alternate mission and system con-

figurations.

Trade Studies - Principally at the mission and system level, to assist in the

identification and definition of the nominal Voyager mission profile and spacecraft

system configuration, and to identify candidates for redundancy, especially
functional redundancy.

SELECTION OF VOYAGER MISSION CONFIGURATIONS

Project Models - The development of analytical models of the costs of potential

mission configurations, the values of specified project levels of accomplishment,

and the probabilities of achieving project accomplishments with potential mission

configurations.

Project Decision Model - The application of decision analysis in the development of

techniques for the selection of the initial Voyager mission configuration and the

configuration selection strategy to follow the initial choice. Exercise of the tech-

nique to select a typical sequence of mission configurations.

i. 3.3 SELECTION OF SPACECRAFT SYSTEM REDUNDANCY

a. Mission Value Model - Definition of an exhaustive and mutually exclusive set of

possible outcomes of the Voyager mission and assignment of relative worth to
these outcomes.
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b. Failure Effects Analysis - Correlation of the effects of failure of hardware

elements within the spacecraft system with the resulting outcomes of the mission.

c. Definition of Reliability Characteristics - The assignment of reliability characteristics
to the modes of operation of spacecraft system hardware.

d. Mission Optimization Program Development - The application of dynamic pro-

gramming in the development of a technique for selecting redundancy within the

spacecraft system to maximize the expected worth of the mission.

e. Mission Optimization - Exercise of the above technique to select typical optimum

system configurations within preselected system constraints.

Figure 1-2 illustrates the detailed flow of work that was followed within each of the fore-

going nine subtasks during the period of the study, and the interrelationships among the

subtasks. The progress of the Application of Redundancy Study in the six Voyager Phase IA

Task C Bi-Monthly Progress Reports (General Electric Documents VOY-CO-PR1 through

PR6) published during the course of the study followed the outline of the nine subtasks. This

subtask structure is not to be employed in this final report and is presented only for the

purpose of cross referencing this report with previous bi-monthly progress reports.

1.4 FINAL REPORT ORGANIZATION

Following Section 1, the remainder of this volume is divided into three sections in concert

with the study organization shown in Figure 1-1.

1.4.1 MISSION AND SYSTEM DEFINITION (SECTION 2)

Section 2 describes the identification of a nominal Voyager mission profile and configuration,

and the detailed definition of the mission flight sequence and the role of the Voyager space-

craft system therein. Functional flow diagrams, i.e., the Air Force 375-5 systems

engineering approach, were employed as the medium for definition.

Summarized in Section 2 is the development of the functional flow diagrams to that level of

detail where the detailed functions to be performed could be correlated with discrete ele-

ments of spacecraft hardware. The spacecraft hardware is categorized as either single-

string hardware; i.e., comprising the single-string spacecraft system (the baseline system

1-4
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void of any intentional redundancy), or potentially redundanthardware. Descriptions of the

weight, power, failure modes, and design characteristics of the single-string and potentially

redundanthardware are reviewed in Section 2.

Also covered are summaries of the 10 trade studies performed during the Application of

Redundancy Study.

1.4.2 SELECTION OF SPACECRAFT REDUNDANCY (SECTION 3)

Section 3 of this final report is devoted to the selection of redundancy within the Voyager

spacecraft system. The section begins with a review of the mission value model, the

medium for definition of the possible outcomes of the Voyager mission and for assignment

of worth to these outcomes.

Discussed next is the development of a comprehensive piece-part failure data base, and the

application of this data base to assigning reliability characteristics to the single-string and

potentially redundant hardware elements of the spacecraft system. The concept of indepen-

dent assemblies is then introduced, and the categorization of the system into families of

independent assemblies is summarized.

Following the discussion of independent assemblies, correlation of the failure modes of the

hardware elements of the spacecraft with the resulting outcomes of the mission is discussed.

The major topics in this area are the independent assembly mathematical models and the

mission map matrix.

A detailed summary of the optimization program system follows the failure modes and

effects writeup. The optimization program system employs a variation of dynamic pro-

gramming to extract from all possible system configurations with varying degrees of

redundancy that subset of configurations with maximum mission expected worth (MEW) as a

function of system weight, power, cost, etc.
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Section 3 concludeswith typical results of the optimization process, conclusions concerning

the amount and type of redundancywhich shouldbe used in the Voyager spacecraft system,

and recommendations for further areas of study and investigation.

1.4.3 SELECTION OF MISSIONCONFIGURATIONS{SECTION4)

Section4 of this volume deals with the selection of the initial Voyager mission configuration,

and the probable sequenceof configurations to follow the initial choice. Applied decision

theory, or decision analysis, is used as the medium for evaluation and selection.

The first step is to define a small-scale or pilot version of the Voyager project and analyze

mission configuration selection within this pilot framework. The initial paragraphs of

Section4 review the pilot model structure, results, andimplications on the more realistic,

full-scale selection model.

Following the review of the pilot model is a discussion of the full-scale problem structure,

viz., postulation of potential mission configurations, anddevelopment of a meaningful

project accomplishment structure.

Given the problem definition, the decision structure is composedof four basic elements:

(1) the value model, which determines the values associated with given levels of project

accomplishments; (2) the cost model, which determines costs associated with potential

mission configurations; (3) the probability model, which ascertains the probabilities of

achieving given project outcomes with given mission configurations; and (4) the decision

model, which selects that sequenceof mission configurations which returns maximum expected

value as a function of expectedproject cost. Each of these four models is discussed in detail.

A computer program system called the SPAN (SpacePrograms ANalysis) system was

designedto create the decision structure and perform a variety of analyses. A portion

of Section4 is devotedto a discussion of SPAN.

Section4 concludeswith results, including typical preferred mission configurations and

sequences, and recommendationsfor further activity.
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1.5 DOCUMENTATION

During the course of the Application of Redundancy Study, nine technical reports and 35

technical memoranda were submitted to JPL. This documentation is referenced as appro-

priate throughout this final Redundancy Study report. The following is a complete listing

of study documentation:

1.5.1 TECHNICAL REPORTS

Number Title Date Author

VOY-C3-TR1 Nominal Voyager Mission 21 Oct. 1966 L. Wagner
Functional Flow Definition

(Top, First and Second

Levels}

VOY-C3-TR2 Interim Report on Decision

Modeling for the Selection

of Voyager Mission

Configurations

VOY-C3-TR3 Demonstration of Optimi-
zation of an Artificial

Voyager Mission

VOY-C3-TR4 Nominal Voyager Mission
Functional Flow Definition

VOY-C3-TR5 Failure Rate Data Base

for Voyager Spacecraft

Redundancy Study (Interim

Report}

VOY-C 3- TR6 Final Report on Pilot De-

cision Modeling for the

Selection of Voyager Mis-

sion C on figurations

VOY-C3-TR7 Reliability Characteristics

of Voyager Components--

Voyager Spacecraft Redun-

dancy Study

23 Nov. 1966

15 Dec. 1966

13 Jan. 1967

24 Jan. 1967

31 Jan. 1967

3 April 1967

(Rev_ 17

June 1967)

SRI (R. Howard, J. Matheson,

G. Murray, A. Pollard},

GE (E. Berger, A. Madarasz}

Honeywell (D. Barnhill, J. Bass,

D. Behun, T. Samsel}, GE

(E. Berger, J. Chestek)

L. Wagner

Honeywell (R. Zamastil}, GE

(H. Nicely}

SRI (R. Howard, J. Matheson,

G. Murray, A. Pollard,

R. Smallwood}

Honeywell (R. Zamastil}, GE

(H. Nicely, C. Mayer}
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VOY-C3-TR8

VOY-C3-TR9

Failure Rate Data Base for
Voyager Spacecraft Redun-
dancy Study(Final Report)

Voyager Independent
Assembly Reference
Tables for Voyager Space-
craft RedundancyStudy

8 May 1967
(Rev: 16

June 1967)

15May 1967

Honeywell (R. Zamastil),

GE (H. Nicely)

C. Mayer

1.5.2

Number

VOY-C3-TM1

TECHNICAL MEMORANDA

Title

Abstracts of Trade

Studies, Voyager Task C

Application of Redundancy

Study

VOY-C3- TM2 Nominal Voyager Mission

Functional Flow Definition

(Launch and Injection

Phase)

VOY- C 3- TM3 Nominal Voyager Mission
Functional Flow Definition

(Transit Phase)

VOY-C3- TM4 Definition of an Artifical

Voyager Mission for
Demonstration of Mission

Optimization via Redundancy

VOY-C3-TM5 Preliminary Voyager
Mission Value Model

VOY-C3-TM6 Nominal Voyager

Mission Single-String

Definition for Mid-Course/

Orbit Trim and Orbit

Insertion Propulsion

Subsystems

VOY-C3-TM7 Nominal Voyager Mission

Single-String Definition
for Guidance and Control

Subsystem

Date

27 Oct. 1966

31 Oct. 1966

15 Nov. 1966

14 Nov. 1966

Author

J. Chestek, W. Johnston,

R. Pahmeier, R. Shuck,

J. Welch

L. Wagner

L. Wagner

Honeywell (D. Barnhill)

14 Nov. 1966 V. Klemas

14 Nov. 1966 C. Gurney

18 Nov. 1966 F. Spollen
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Number

VOY-C3-TM8

VOY-C3-TM9

VOY-C3-

TM10

VOY-C3-

TMll

VOY-C3-

TM12

VOY-C3-

TM13

VOY-C3-

TM14

VOY-C3-

TM15

VOY-C3-

TM16

VOY-C3-

TM17

VOY-C3-

TM18

Title

Nominal Voyager Mission

Single-String Definition for

Computer and Sequencer

Nominal Voyager Mission

Single- String Definition for

Power Subsystem

Nominal Voyager Mission

Single-String Definition for

Engineering Mechanics

Nominal Voyager Mission

Single-String Definition

for the Telecommunication

System

Nominal Voyager Mission
Functional Flow Definition

(Orbit Achievement Phase}

Nominal Voyager Mission

Functional Flow Definition,

Orbit Descent and Entry

Nominal Voyager Mission

Functional Flow Definition,

Orbiter Operations

Redundant Alternatives for

Midcourse/Orbit Trim and

Orbit Insertion Propulsion

Subsystems

Nominal Voyager Mission
Definition of Candidate

Redundancy for Guidance

and Control Subsystem

Nominal Voyager Mission
Definition of Candidate Re-

dundancy for Computer and

Sequencer

Nominal Voyager Mission

Definition of Candidate Re-

dundancy for Power

DaM

16 Nov. 1966

18 Nov. 1966

30 Nov. 1966

18 Nov. 1966

1 Dec. 1966

14 Dec. 1966

16 Dec. 1966

14 Dec. 1966

23 Dec. 1966

Author

J. Tangny

R. Wray

R. Dawson

E. Niemann, N. Robinson

L. Wagner

L. Wagner

L. Wagner

C. Gurney

F. Spollen

27 Dec. 1966 J. Tanguy

28 Dee. 1966 R. Wray
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Number

VOY-C3-

TM19

VOY-C3-

TM20

VOY-C3-

TM21

VOY-C3-

TM22

VOY-C3-

TM23

VOY-C3-

TM24

VOY-C3-

TM25

VOY-C3-

TM26

VOY-C3-

TM27

VOY-C3-

TM28

VOY-C3-

TM29

VOY-C3-

TM30

Title

Nominal Voyager Mission
Defnition of Candidate

Redundancy for Engineering
Mechanics

Nominal Voyager Mission
Definition of Candidate Re-

dundancy for Telecommuni-

cations Subsystem

Definition of Mission Out-

comes for Nominal Voyager

Mission

Nominal Voyager Mission

Flight Sequence

Preliminary Requirements

for Decision Modeling for

the Selection of Voyager

Mission Configurations

Abstracts of Trade Studies,

Voyager Task C Application

of Redundancy Study

Voyager Mission Value
Model

Trade Study on Data

Multiplexing

Trade Study on Verification

of Maneuver Attitude

Trade Study on Attitude

References and Initial

Acquisition

Trade Study on Degree of

Active Thermal Control

Orbit Insertion Trade Study

Dam

30 Dee. 1966

30 Dec. 1966

27 Dec. 1966

23 Dec. 1966

30 Dec. 1966

30 Dec. 1966

6 Feb. 1967

15 Feb. 1967

15 Feb. 1967

14 Feb. 1967

29 Feb. 1967

13Mar. 1967

Author

E. Dawson, C. Ockert

N. Robinson

B. Bachofer

H. Nicely

L. Hargrave

J. Chestek, W. Gurney,

W. Johnston, C. Ockert,

R. Pahmeier, D. Sergay,

F. Spollen, J. Welch

V. Klemas

R. Pahmeier

J. Welch

J. Welch

C. Ockert

J. Welch
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Number Title Date Author

VOY-C3- Emergency Telemetry Link 17 Mar. 1967
TM31

VOY-C3- Spacecraft Emergency 17 Mar. 1967

TM32 Routine Trade Study

VOY-C3- Trade Study on Digital vs. 15 Mar. 1967

TM33 Analog Control Signal

Data Processing

VOY-C3- Trade Study on Methods of 15 April 1967

TM34 Accommodating Midcourse/

Orbit Trim Engine Mal-
function

VOY-C3- Trade Study on Launch 8 April 1967
TM35 Guidance and Midcourse

Correction Philosophy

R. Pahmeier

D. Sergay, L. Wagner

F. Spollen

R. Graser, C. Gurney

D. Pucher, E. Taylor,

R. Salinger
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SECTION 2

MISSION AND SYSTEM DEFINITION

2.1 ORGANIZATION

The Voyager mission and system definition activity was divided into three major areas of

endeavor, as suggested by Figure 2-1:

ae

bl

c.

Mission Definition - Postulation of potential Voyager mission configurations and

allowable sequences thereof. Identification of a nominal 1973 Voyager mission

configuration and flight profile. Functional flow definition of the mission profile.

System Definition - Detailed development of the functional flow so that functions are

correlatable with elements of spacecraft hardware. Definition of the single-string

spacecraft system. Categorization of hardware as either single-string or potentially

redundant. Description of hardware characteristics.

Trade Studies - Studies at the mission and system level to assist in the identification

of the nominal Voyager mission configuration and the single-string spacecraft system,

and to identify candidates for redundancy.

These three topics are reviewed in Sections 2.2 through 2.4.

TRADE

STUDI ES

VOYAGER

MISSION

DE FI NI TION

VOYAGER

SYSTEM

DEFINITION

Figure 2-1, Voyager Mission and System Definition Organization
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2.2 MISSION DEFINITION

2.2.1 GENERAL

Prior to the initiation of work on the pilot and full-scale mission configuration decision

models (see Section 4), some initial configuration selection analysis was performed early in

the study to provide the necessary groundwork for the system redundancy selection activity.

This analysis consisted of defining some 40 potential mission configurations (Table 2-1) and

logical selected sequences thereof. Figure 2-2 depicts the mission profile definition for the

defined configurations in terms of the top-level mission phases. Functional breakdowns of

each top-level mission phase and logical selected sequences of potential mission configurations

were published in Bi-Monthly Progress Report No. 2 (VOY-CO-PR2) and are not repeated in

this volume in the interest of brevity.

2.2.2 1973 REFERENCE MISSION

2.2.2.1 Reference Mission Configuration

From among the 40 possibilities defined in Table 2-1, a typical 1973 mission configuration

was selected as the reference configuration against which trade studies could be performed

and the application of redundancy analyzed. This reference mission configuration consisted

of one Saturn V launch vehicle with two planetary vehicles. Each planetary vehicle consisted

of one spacecraft and one capsule. The reference mission profile contained three interplanetary

trajectory corrections, two orbit trim maneuvers, and a 180-degree roll reorientation late in

the orbiting mission to accommodate the planet scan platform field of view.

In general, the primary spacecraft functions and their implementation are similar to those

defined in the General Electric Phase IA, Task B Study. The capsule configuration includes

an active attitudecontrol subsystem, aeroshell retardation during entry, propulsive retardation

during terminal descent, relay link communications during orbit descent and entry, and

establishment of a direct earth communications link and ground command capability during

landed operations.
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Table 2-1. Preliminary Potential Mission
Configurations

Configuration

Number

1

2

3

4

5

6

7

8

9

i0

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

4O

Number

of

SV's

Number of

PV's Per

SV

Number of

Capsules

Per PV Size

Small

Small

Small

Medium

Medium

Small

Small

Small

Medium

Medium

Small

Medium

Medium

Medium

Medium

Medium

Medium

Large

Medium

Medium

Small

Small

Small

Medium

Medium

Small

Small

Small

Medium

Medium

Small

Medium

Medium

Medium

Medium

Medium

1 2

1 1

1 2

1 2

Medium

Large

Medium

Medium

First Capsule Per PV

Entry

Direct

Direct

Orbit

Orbit

Orbit

Direct

Direct

Orbit

Orbit

Orbit

Direct

Orbit

Orbit

Orbit

Orbit

Orbit

Orbit

Orbit

Orbit

Orbit

Direct

Direct

Orbit

Orbit

Orbit

Direct

Direct

Orbit

Orbit

Orbit

Direct

Orbit

Orbit

Orbit

Orbit

Orbit

Orbit

Orbit

Orbit

Orbit

Survivable Retardation

No

No

No

No

No

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Size

Second Capsule Per PV

Entry Survivable Retardation

Aeroshell Small Direct

Aeroshell & Chute Small Direct

Aeroshell Small Orbit

Aeroshell Medium Orbit

Aeroshell & Chute Medium Orbit

Aeroshell

Aeroshell & Chute

Acroshell

Aeroshcll

Aeroshell & Chute

Aeroshell Small Orbit

Aeroshell, Chute & Medium Orbit

Impact Limiting

Aeroshell, Rough Medium Orbit

Landing Propulsion

& Impact Limiting

Aeroshell, Chute &

Impact Limiting

Aeroshell, Rough

Landing Propulsion,

& Impact Limiting

Aeroshell, Chute & Small Direct

Impact Limiting

Aeroshell, Rough Small Direct

Landing Propulsion,

& Impact

Aerosbell & Soft

Landing Propulsion

Aeroshell, Chute & Large Orbit

Impact Limiting

Aeroshell, Rough Large Orbit

Landing Propulsion,

& Impact Limiting

Aeroshell Small Direct

Aeroshell & Chute Small Direct

Aeroshell Small Orbit

Aeroshell Medium Orbit

Aeroshell & Chute Medium Orbit

Aeroshell

Aeroshell & Chute

Aeroshell

Aeroshell

Aeroshell & Chute

Aeroshell Small Orbit

Aeroshell, Chute & Medium Orbit

Impact Limiting

Aeroshell, Rough Medium Orbit

Landing Propulsion

& Impact Limiting

Aeroshell, Chute &

Impact Limiting

Aeroshell, Rough

Landing Propulsion

& Impact Limiting

Aeroshell, Chute & Small Direct

Impact Limiting

Aeroshell, Rough Small Direct

Landing Propulsion,

& Impact Limiting

Aeroshell & Soft

Landing Propulsion

Aeroshell, Chute & Large Orbit

Impact Limiting

Aeroshell, Rough Large Orbit

Landing Propulsion,

& Impact Limiting

No

No

No

No

No

No

Yes

No

No

Yes

Yes

No

No

No

No

No

No

Yes

Yes

No

No

Yes

Yes

Aeroshell

Aeroshell & Chute

Aeroshell

Aeroshell

Aeroshell & Chute

Aeroshell

Aeroshell, Chute &

Impact Limiting

Aeroshell, Rough

Landing Propulsion

&Impact Limiting

Aeroshell

Aeroshell

Aerouhell & Soft

Landing Propulsion

Aeroshell & Soft

Landing Propulsion

Aeroshell

Aeroshell & Chute

Aeroshell

Aeroshell

Aeroshell & Chute

Aeroshell

Aeroshell, Chute &

Impact Limiting
Aeroshell, Rough

Landing Propulsion

& Impact Limiting

Aeroshell

Aeroshell

Aeroshell & Soft

Landing Propulsion

Aeroshell & Soft

Landing Propulsion
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CONFIGURATIONS

1 THROUGH 20
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10.0
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CONFIGURATIONS

21 THROUGH 40

l

8.0 LAUNCH &

INJECTION 2 SAT
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6.0
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AND ENTRY

5.0
ORBIT

ACHIEVEMENT

2.0

ORBITER

OPERA TIONS

3.0 ORBIT DE-

SCENT AND E}

(SURE IMPAC

4.0 ORBIT DESC

AND ENTRY
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4.0 REF. ORBIT

DESCENT & ENq

(NONSURM IMPA

C
I
I
I

I
I
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2.0 REF.ORBITER
O1_ERATIONS

1.0

LANDED

OP ERA TIONS

C ON FIGURA TIONS

I,2,21, 22, 6,7,26 AND 27

CON FIGURATIONS

16,17, 36 AND 37

2.0 REF. ORBITER

._iOPERA TIONS

CONFIGURATIONS

11 AND 31

!RY

2.0 REF. ORBITER
OPERATIONS -- i

C ON FIGURA TIONS

8,9,I0,28, 29, 30,3,4,5,23

24 AND 25

2.0 REF. ORBITER
OPERATIONS

_1.0 LANDED

REF,

OPERA TIONS

_l

CON FIGURA TIONS

14, 15, 34, 35, 18, 38, 12, 13,

32, 33,19, 20, 39 AND 40

Figure 2-2. Top Level Functional Flow

Diagrams for Preliminary Mission

Configurations
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2.2.2.2. Reference Mission Profile

Figure 2-3 is the top level functional flow diagram for the reference mission configuration.

The top-level mission phases are defined as follows:

a.

b.

C.

do

e.

f.

go

Prelaunch Operations (7.0): Arrival at Eastern Test Range through liftoff.

Launch and Injection (6.0) : Lfftoff through planetary vehicle separation.

Transit (5.0): Initiation of celestial reference acquisition through start
of orbit insertion events.

Orbit Achievement (4.0): Initiation of orbit insertion events through
start of capsule separation events.

Orbit Descent and Entry (3.0) : Initiation of capsule separation events
thr .ugh:

1. Confirmation of impact survival for the capsule via the

relay link.

2. Completion of descent and entry data transmission to earth

by the spacecraft.

Orbiter Operations (2.0): All operations for the spacecraft

following completion of descent and entry data transmission to

earth through completion of the orbiter mission.

Landed Operations (1.0): All operations for a survivable impact

capsule following confirmation of impact survival via the relay link
until completion of the landed mission.

2.2.2.3 Nominal Flight Sequence

The top-level functional flow diagram (Figure 2-3) was initially broken down through

the first and second levels of detail, in accordance with the functional flow guidelines

set forth in Air Force Systems Command Manual 375-5, and released in Technical

Report VOY-C3-TR1. At the first level of the functional flow, starting times and time

durations were assigned to each function in accordance with the General Electric Phase

IA, Task B Report.
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PRELAUNCH LAUNCH AND ORBIT

IOPERATIONSJ l INJECTIONJ J J JACHIEVEMENT
3.o IORBIT

DESCENT
AND ENTRY

__.J 2'0ORBITE R

I OPERATIONS

_ I'OLANDED
OPERATIONS

Figure 2-3. Nominal 1973 Mission Top Level Functional Flow Definition

Table 2-2 is the flight sequence for the nominal mission configuration and profile. All

first level functions shown in Table 2-2 are mutually exclusive and continuous, except for

support functions (denoted by parentheses) and the functions of Landed Operations, which

are performed in parallel with those of Orbiter Operations. This flight sequence was

published in Technical Memorandum VOY-C3-TM22.

2.3 SYSTEM DEFINITION

2.3.1 SINGLE-STRING FUNCTION FLOW DEFINITION

In order to define the functions to be performed by the spacecraft and the hardware

required to perform these functions, each top-level mission phase of Figure 2-3 pertinent

to the spacecraft and its interfaces was broken down to a level (usually the fourth or fifth

level) at which the function to be performed could be correlated with discrete elements

of spacecraft system hardware.

At this level, it is useful to recognize, isolate, and define a baseline spacecraft system void

of any intentional reduendancy -- in other words, a system in which every element of

hardware performs at least one in-line mission function. This fundamental, albeit

fictitious, system is called the "single-string system" and may be considered the

reference system to which redundancy is added.
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A sample of isolation of single-string system hardware via successive functional flow

breakdowns is shown in Figure 2-4, where the top level function describing the transit of

the planetary vehicle from earth to Mars is broken down into succeeding levels of detail

until a single-string element of spacecraft hardware (in this case, a sun sensor} is

isolated.

Detailed functional flow breakdowns to single-string hardware for the five top-level

mission phases in which the spacecraft system is operational were released by mission

phase during the first half of the study in the following five technical memoranda"

Document No.

VOY-C3-TM2

VOY-C3-TM3

VOY-C3-TM12

VOY-C3-TM13

VOY-C3-TM14

Title

Launch and Injection

Transit

Orbit Achievement

Orbit Descent and Entry

Orbiter Operations

2.3.2 DEFINITION OF POTENTIAL REDUNDANCY

As the single-string function flow diagrams were being developed and functions were

broken down into subfunctions of increasing detail, alternate methods of performing

functions were encountered. At each such point, the choice was made to select the best

approach for the single-string system. Subsequently, the discarded alternatives were

examined as candidates for functional redundancy. In addition, block, multichannel, and

other types of redundancy were considered as possible additions to the single-string system.

In this manner, an overly abundant reservoir of potential block and functional redundancy

was proposed and correlated with the functional flow diagrams. It was from this pool of

candidate redundancy that the actual system redundancy was selected.

Figure 2-5 illustrates this process and how it is reflected in the functional flow definition.

The command to turn off the spacecraft midcourse/orbit trim engines is nominally
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Figure 2-4.
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generated by the system AV register, which basically integrates the thrust level to a

threshold corresponding to the desired AV. An additional block redundant AV register

is shown as a candidate for redundancy. As a functional backup to the AV register in

this application, it is proposed to use a time-to-go register. In this particular case, the

proposed functionally redundant element, the TTG register, is also an element of the

single-string system, because it is employed for in-line functions elsewhere in the

mission. Also, a block redundant TTG register is proposed for the system.

The entire mission functional flow definition, including isolation of both single-string and

potentially redundant hardware, was updated and consolidated into a single Technical

Report" VOY-C3-TR4, "Nominal Voyager Mission Functional Flow Definition," which was

released on 13 January 1967. A major accomplishment of the Redundancy Study, this

volume of some 8000 functions marked the end of the functional flow definition phase.

2.3.3 DEFINITION OF HARDWARE CHARACTERISTICS

As the development of the lower level functional flow diagrams progressed, all hardware

elements required in the single-string spacecraft were identified. These hardware

elements were grouped into their parent subsystems and defined in detail via the following

series of technical memoranda:

Document No.

VOY-C3-TM6

VOY-C3-TM7

VOY-C3-TM8

VOY-C3-TM9

VOY-C3-TM10

VOY-C3-TMll

Title

Propulsion Subsystems

Guidance and Control Subsystem

Computer and Sequencer Subsystem

Power Subsystem

Engineering Mechanics Subsystems

Telecommunications Subsystems

These technical memoranda provide a general description of the single-string subsystem(s)

and of the individual elements or components which comprise that subsystem. Also, a
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failure modesand effects analysis is included for each hardware element. The individual

hardware descriptions permit quantitative estimates of the hardware reliability character-

istics to be made.

These technical memoranda include estimates of the penalties associatedwith each

hardware element (weight, volume, and power requirements). The sum of the penalties

associated with the single-string hardware elements provides a baseline weight, volume,

and power requirement for the spacecraft, any excessover which may be allocated to

redundant hardware.

As redundancy candidateswere conceivedand considered for addition to, or replacement of,

single-string hardware elements, they were documentedby parent subsystemvia the

following series of technical memoranda:

Document No.

VOY-C3-TM15

VOY-C3-TM16

VOY-C3-TM17

VOY-C3-TM18

VOY-C3-TM19

VOY-C3-TM20

Title

Propulsion Subsystem Alternatives

Guidance and Control Subsystem Alternatives

Computer and Sequencer Subsystem Alternatives

Power Subsystem Alternatives

Engineering Mechanics Subsystem Alternatives

Telecommunication Subsystem Alternatives.

These technical memoranda describe the redundancy candidates proposed for consideration

in determining the optimum spacecraft configurations. Their topical content is identical

to the aforementioned single-string description memoranda, TM6 through TMll.

2.4 TRADE STUDIES

Ten trade studies were performed during the Application of Redundancy Study, and the

results of each study were released in a separate technical memorandum. These trade

studies were performed for the following reasons:
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a.

b.

co

To assist in the identification and definition of the reference mission

configuration and profile and the single-string spacecraft system.

To identify candidates for redundancy, with special emphasis on functional

redundancy.

To provide general system engineering support to the other three studies

being performed under the Task C contract, with special emphasis on the

Planetary Quarantine Study.

The trade study topics and the technical memoranda in which they are reported in detail

are as follows:

Document No.

VOY-C3-TM26

VOY-C3-TM27

VOY-C3-TM28

VOY-C3-TM29

VOY-C3-TM30

VOY-C3-TM31

VOY-C3-TM32

VOY-C3-TM33

VOY-C3-TM34

VOY-C3-TM35

Title

Data Multiplexing

Verification of Maneuver Attitude

Attitude References and Initial Acquisition

Degree of Active Thermal Control

Orbit Insertion

Emergency Telemetry Link

Spacecraft Emergency Routines

Digital vs Analog Attitude Control Signal Data Processing

Methods of Accommodating a Midcourse/Orbit Trim Engine

Malfunction

Launch Guidance and Midcourse Correction Philosophy

In the following 10 subsections, abstracts of the foregoing 10 trade studies are presented.

2.4.1 DATA MULTIPLEXING

The purpose of the data multiplexing study was to evaluate alternate techniques for

combining low-rate, real-time data with high-rate, stored data for transmission to earth

on a single carrier.
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Four different types of multiplexing were considered:

a.

Do

Co

do

Insertion of low-rate data (including sync necessary for data separation at

earth) into gaps in the stored data stream.

Periodic displacement of stored data by real-time data (plus sync) during

storage readout.

Conventional frequency multiplexing, where the two data streams are placed

on separate subcarriers.

Conventional time multiplexing, where the two data streams are formatted to

form a single data stream.

Since gaps in the stored data stream represent wasted transmitter power, the first

technique was considered to determine if it was desirable to fill the gaps with useful

real-time data. This scheme was rejected because the real-time data requirements

cannot be met without the inclusion of a large real-time data buffer which requires

more implementation complexity than the other techniques considered. Additional gaps

could be placed on the stored data stream by the DAE to reduce or eliminate the

buffering; however, the complexity of this technique also compared unfavorably with

alternate techniques.

The second type of multiplexing considered (displacement of stored data by real-time

data} offers high efficiency with minimum implementation complexity; however, the

displaced stored data is destroyed. Although the percentage of data destroyed can be

less for certain conditions than the percentage of data in error due to channel noise,

experimenters might still find it objectionable. The technique, therefore, appears to

offer more potential as a redundant backup than as a prime mode of operation.

Two implementations for frequency multiplexing were considered. They are identical

except that one included additional circuits to optimize the power division between the two

subcarriers each time the stored data rate was switched from one value to another. The

added efficiency of the latter technique was found to be well worth the additional
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implementation complexity; therefore, this technique is recommended if a frequency

multiplexing technique is used.

Two implementations for the time multiplexing technique also were considered. Both

performed the sameoverall function and had identical efficiencies. The first implementa-

tion required two buffers on the stored data stream; one of which was being loadedwhile

the real-time dataandthe other buffer were being read out. The secondimplementation

used a single small buffer in the stored data stream which was read in and read out

simultaneously at different rates. These differential rates were compatible, however,

since read-out was halted whenthe buffer was empty so that real-time data could be

inserted in the outputdata stream. During this time the buffer would again be loaded.

Comparison of the two time multiplexing implementations revealed no clear-cut

advantageof onebuffering technique over the other; however, the differential-timing

buffering techniquewas foundto give a slightly lower calculated failure rate.

The final comparison of the conventional frequency andtime multiplexing techniques

showedthat neither have severe disadvantages;however, their characteristics differ

such that a preferred technique canbe identified under certain conditions. The required

ratio of stored to real-time data rates is a major influencing factor. Time multiplexing

showsa significant efficiency advantageat low ratios; however, at high ratios frequency

multiplexing is more efficient. In all cases, frequency multiplexing is the simpler to

implement. It also does not require that high-rate data be detected immediately upon

reception at earth to extract the real-time data. Assuming that high-rate data will be

encoded, immediate decodingis therefore not required. Not only does this eliminate

the relatively complex decoder from the real-time data path, but it also allows high-rate

data to be predetection recorded uponreception and decodedlater at a slower rate.

Reduced-speeddecodingis desirable, at least from the standpoint of decoder complexity.

On the basis of the aboveconsiderations and the Voyager data requirements found to be

typical to date, frequency multiplexing is recommended over time multiplexing.
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2.4.2 VERIFICATION OF MANUEVER ATTITUDE

The purpose of the attitude verification function is to provide an independent check to

determine that the spacecraft is in the desired manuever attitude prior to the firing of the

midcourse or orbit insertion engines and capsule separation. The most critical applica-

tion of attitude verification relates to orbit insertion, where it is most important to

avoid maneuvering in any erroneous direction which might result in violation of the

planetary quarantine constraint.

The trade study made a comparative evaluation of several independent attitude verifica-

tion techniques based on the application of the following components or operations:

a.

b.

co

do

eo

fo

Solar Aspect Sensors - Digital output, passive, flight proven, sensors yield continuous

measurement of sun angle. Properly placed around the spacecraft, they can measure

the vehicle orientation with respect to the sun with complete spherical coverage.

They are flexible enough to accommodate various spacecraft configurations, are

compatible with spacecraft digital data systems, and can be used for autonomous or
earth-based verification.

High Gain Antenna Pointing - Requires the commanded gimballing of the antenna to

a preselected position prior to the maneuver. It yields only singular point coverage,
and requires earth cooperation. There is a risk to mission success if the antenna

fails to come back to the home position, and the preclusion of continuous high-data
rate during the maneuver itself.

Redundant Gyro Packages - Yields an error signal when the two gyro sets do not

agree, but no indication of which one is correct, thus aborting a maneuver

whenever any gyro fails.

Pre-maneuver Check Attitude Maneuver - Essentially a closed loop, return to

origin (Sun/Can.pus) rehearsal of mareuver systems and does not yield an

actual error indication during the actual maneuver. It also increases gas

consumption, component wear, and probability of failure.

Can.pus Tracker - Used in the star field mapping mode. R yields positional

information only as pitch/yaw rotations are in progress and does not effect final

position verification if large stars are not in the sensor field of view. It is much

more complex than the solar aspect sensor.

Telemetered Diagnostic Checks - Checks the gyro package and control system

which can be analyzed on earth, but does not provide an independent measurement

of vehicle attitude and thus yields no improvement in knowledge of the accuracy of

maneuver attitude. This mode is recommended only for system operational diagnosis.
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Based on the comparison of the various alternatives, it is recommended that digital solar

aspect sensors be used to implement the independent verification function. This approach

has the advantage of using simple, highly reliable techniques proven in operation with

other space vehicles. The recommended system employs a two-way telecommunication

link for earth analysis of the verification signal. It also is recommended that the solar

aspect sensor signals control switch-over to the redundant set of gyros.

2.4.3 ATTITUDE REFERENCES

The objective of this study was to review briefly alternate attitude reference schemes.

Alternates, considered in the Task C RTG Study because of the absence of sun pointing

requirement for power acquisitions,were considered with respect to applicability to the solar

powered Voyager spacecraft. Reference directions considered were Sun, Mars local vertical,

Earth and Canopus. The implications of these celestial reference schemes on design, degrees

of freedom, and operation of major spacecraft components (such as the high gain antenna,

planet scan platform, solar panels and celestial reference sensors) were analysed to compare

the relative advantages and disadvantages of each scheme. A total of 14 alternative orientation

configurations were compared in tabular format.

Mars pointing vehicles generally eliminated PSP articulation requirements, but required

articulation of the solar array. Earth oriented vehicles simplified the antenna pointing,

but the complex task of earth sensing was undesirable.

The Sun/Canopus celestial references, as selected in the General Electric Task B

Voyager spacecraft design, is still preferred because: (1) it uses readily acquired

references, and (2) its fixed orientation relative to the sun significantly alleviates the

solar radiation problem.

An alternative orientation which also is attractive makes use of a digital solar aspect

sensor to maintain the vehicle attitude in a sun-biased direction, the third degree of

freedom being determined by the direction to Canopus. This orientation has the
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advantageof permitting a fixed high gain antenna, although with some compromise of the

solar power input.

2.4.4 DEGREEOF ACTIVE THERMAL CONTROL

This study analyzed the Voyager thermal control system in an effort to find ways to

increase the reliability of the system. Partially passive control is concludedto be of

value for special applications, suchas the gyros, gimbal actuators and for electronic

equipment having a constant power output during the mission. It is not recommendedfor

general usewith equipment havingwidely varying power levels, since an excessive

amount of auxiliary heater power is required to keep equipment within permissible

temperature ranges. As a reliability alternative, incorporating partially passive

control helps if the louvers fail closed on a high power level bay. It is adverse for all

other failure modes and for normal operation.

The study showed very strong benefits from internal coupling between electronic bays

and internal structure, tanks, etc. These benefits reduce the severity of incident sun

maneuver transients and can overcome the effects of louver failure for an entire bay or

for two or three bays adjacent to each other by internal redistribution of the thermal

loads.

A lightweight (10 pound) annular heat pipe arrangement shows the capability of transferring

hundreds of watts of heat with negligible thermal gradients, providing an order of mag-

nitude increase in the internal thermal coupling. This is valuable for missions to

Venus and Mercury, since it can solve the difficult problem of incident sun maneuvering

transients.

The results of the linkage study show the tape bar linkage to be superior to the pin-lever

and rack-pinion systems.

Three actuator systems were studied including vapor-liquid bellows, bimetal coils, and

the melting wax hydrostatic expansion capsule. The wax capsule has a unique advantage in

energy/weight, but is not yet flight proven for vacuum environments, having been flown
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in spacecraft only in forced convection thermal control applications. Between the vapor

liquid bellows and the bimetal coils, the trade is fairly close, with bimetal having the

advantage of greater simplicity and more flight experience, while the bellows has faster

response and higher force levels.

2.4.5 ORBIT INSERTION

The objective of this study was to investigate the effects of abnormal orbit insertion burns

on the resulting aerocentric orbits. The specific errors that were considered were in the

timing, direction and magnitude of the velocity increment.

Post-burn trajectories were determined and classified as hyperbolic fly-bys, safe orbits

(from the planetary quarantine consideration), decay orbits (not acceptable from

quarantine requirements), and hyperbolic or elliptical impacts.

The resulting data were reviewed to determine implications concerning possible require-

ments for on-board sensing or logic backup-firing commands.

Figure 2-6 shows the geometry of the encounter and orbit insertion for the case where

the applied velocity increment is assumed to lie in the same plane as the approach

hyperbola. The parameters _7and _, respectively, describe the timing and direction of

the applied velocity increment.

Figure 2-7 is a sample of the orbit response as a function of _ and _, in this case for a

1974 encounter with a V_ of 3.5 km/sec, 1000 km periapsis altitude, and a nominal AV

of 1.9 km/second. The nominal insertion condition is assumed to be a periapsis-to-

periapsis transfer, described by the point so labeled. The dotted line describes that c_-_

history when the vehicle attitude relative to inertial space is fixed at the nominal insertion

attitude. This figure reveals that, for the conditions shown, there is no possibility of

quarantine violation for insertion maneuvers at any time provided that there is no large

departure from nominal insertion attitude. Furthermore, there is no hazard of quarantine

violation at any attitude if the insertion maneuver occurs within about + 1.5 minutes of

nominal.
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The study yielded results for both in-plane and out-of-plane insertion maneuvers and, in

addition, showed the sensitivity of the resulting periapsis and apoapsis altitudes and

apsidal rotation to the direction and timing of the insertion maneuver. Figure 2-8 is a

sample curve from the report, showing apoapsis sensitivity to errors in direction and

timing of insertion for a 1974 encounter with a AV of 1.8 kin/second°

Encounter geometry phenomena that were considered as information sources for

autonomous backup orbit insertion firing commands were: (1) vehicle-to Mars range,

(2) crossing the Mars terminator, and (3) the angle between the vehicle-sun line and

the Mars local vertical. The approaches were all rejected on the basis of excessive

complexity of implementation and low accuracy reliability relative to the planetary

quarantine constraint. A direct command link, as included in the GE Task B design, is

still recommended as the primary means of initiating the orbit insertion burn in the

event of a failure in the computer and sequencer, provided the timing of the burn is

restricted so that attitude error cannot result in planetary impact.
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2.4.6 EMERGENCY TELEMETRY LINK

In this study the GE Task B telecommunication subsystem was evaluated to determine the

merits of alternate methods of implementing and operating the system to enhance its

capability of returning diagnostic data under various failure conditions. Techniques

considered either tended to minimize the dependency of the emergency link on the various

spacecraft subsystems that might have failed, or tended to increase the ability of the

basic design to return useful diagnostic data in the event of a failure.

Relatively complex additions to the present system were found to be required to minimize

the dependency of the emergency telemetry function on the various spacecraft subsystems.

These additions do not appear advisable, not only because the probability of the failure

conditions under which they offer an improvement is low, but also because the additional

probability of saving the mission by ground action under these conditions is remote.

Some techniques for obtaining more useful data were found to offer advantages which might

warrant their incorporation into the system. These include increased data rates (where

available), data compression (especially where the information concerns parameter

values leading to on-board switching), and recovery of data otherwise lost prior to signal

acquisition at earth. No specific designs are recommended since, as indicated in the

report, such designs should evolve as an integral part of the overall on-board and earth-

based failure sensing and control philosophy.

2.4. 7 SPACECRAFT EMERGENCY ROUTINES

The objective of this trade study was to identify: (1) critical system and subsystem level

failures which could have a major effect on the mission outcome, and (2) ways of accommodat-

ing these failures with minimum degradation of the mission. Accommodation of the failures

was permitted by utilizing modified primary components of other subsystems or by

incorporating minimum cost (weight, power, etc. ) backup techniques. System requirements,

design features, weight and power penalties, and reliabilities were estimated to permit

evaluation of the merit of incorporating these emergency routines into the spacecraft

system design.
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It was assumedthat continuous ground monitoring and immediate (except for preparation

and transmission time) ground commandcapability were available during maneuvers and

the orbital phaseof the mission. Emergency routines would be initiated by ground command

in that situation, except for corrective or preventative action that cannot be delayed; e.g.,

overpressure in an engine.

In the cruise phase, it was assumed that intermittent ground monitoring was available

and that necessary holding action emergency routines would be initiated immediately by

on-board logic. Subsystems other than the failed one were assumed to be working properly

at the time of each failure in all cases.

The approach consisted of reviewing the 1973 Voyager mission functional flow definition

and identifying the areas of criticality. Possible failure of the spacecraft subsystems

required to perform critical in-line and support functions were postulated, and methods

of counteracting these failure were derived. Most of the failures and emergency routines

concerned the guidance and control, propulsion, science data gathering, and science and

engineering data transmission functions. As emergency routines were conceived, a

recommendation was made as to whether the routine should be evaluated further.

Table 2-3 is a sample of postulated spacecraft system failures and candidate emergency

routines to circumvent them.

2.4. 8 DIGITAL VS ANALOG CONTROL SIGNAL DATA PROCESSING

This trade study compared guidance and control configurations employing digital

sensors and/or processing against the Task B analog design, primarily from a

reliability point of view.

During the study the following configurations were considered:
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System or Subsystem

Failure

1.0 Failure of Stabilized

Platform in Instrument

Unit (G&C Portion) of

Launch Vehicle

2.0 Failure of LV to

Inject PV's on Inter-

planetary Trajectory

within Limits of Mars

Orbit Insertion

Requirements

Mission Phase

Where Applicable

LI T OA ODE JOO LO

X

X X

First Level

Function Failed

6. i Achieve Parking Orbit

6.2 Trajectory Injection

6.2 Trajectory Injection

Mission Outcome

6.1 Mission Failure

6.2 Mission Failure,

Deep Space Mission,

or Far Flyby.

Deep Space Mission or

Far Flyby

Candidate F

Consi

Backup



edundancy
lered

yros 1.1

2.1

2.2

2.3

S/C Emergency Routine(s)

Utilize Gyros and Autopilot in Either

Planetary Vehicle as a Back-Up to

Stabilized Platform of the Launch

Vehicle (as the Inertial Measuring

Unit in the Apollo Spacecraft Command

Module is Used)

Utilize all MC/OA Propulsive Capability

(Allowing None for Orbit Trim Maneuvers)

Keeping Capsules on Board.

Separate Capsules and Utilize all MC/OA

Propulsive Capability (Allowing None

for Orbit Trim Maneuvers)

Separate Capsules and Utilize only MC

Allotted Propulsive Capability

2.4 Separate Capsules and Utilize both

MC/OA and Orbit Insertion Propulsive

Capability to Achieve Either Near or

Far Fly-By.

2.5 Do not Separate Two PVls Initially, but

Utilize Entire Propulsive Capability of

PVII to Correct Trajectory and then

Separate.

2.6 Utilize a Portion of Orbit Insertion

Propulsive Capability to Correct

Trajectory and Insert into More

Eccentric Orbit (With Capsules)

2.7 Separate Capsules and Utilize a Portion

of Orbit Insertion Propulsive Capability

to Correct Trajectory and Insert into

More Eccentric Orbit

2.8 Combine Routine 2.5 with Either

Routine 2.1 or 2.7 (i. e. Utilize Orbit

Insertion Propulsive Capability of PVII

and a Portion of that of PVI to Achieve

a Degraded Orbit with PVI. )

Design Modifications,

Hardware Resources, Etc.

Requires Complex LV/PV Interface

Negotiations and Wiring of Interfacing

Signals Through the In Flight Disconnect

as well as Design Compatibility

Modifications and Detail - Weight and

Power Penalties are Negligible.

None

None

None

None

Requires Shroud, PV Adapter Support,

Additional Separation Scheme, Guidance

and Control S/S Modifications, Etc.

Weight Penalty _200 lbs - Power Require-

ments within Capability of Power S/S

during Launch and Injection.

Requires Multiple Start (Liquid) Orbit

Insertion Propulsion Subsystem

Requires Multiple Start (Liquid) Orbit

Insertion Propulsion Subsystem

Requires Design Modifications,

Requirements, Etc. As Delineated for

Routines 2.5, 2.6, and 2.7.



Table 2-3. System or Subsystem Failures

and Emergency Routines (Partial Listing)

_ommand and

hing Requirements

witching by Ground

mand (to LV and PV)

nd Command

Additional)

nd Command

Additional)

nd Command

Additional)

nd Command

Additional)

nd Command

Additional)

! nd Command

Additional)

i nd Command

Additional)

nd Command

Additional)

Approximate

Probability

Success

0. 98

0. 99

0. 98

0. 98

0.97

0.85

0. 98

0.97

0.85

Effect of Emergency

Routine on S/C and

Mission

Enables Salvaging Failed

Mission and Putting on

Nominal Course

No Orbit Trim Capability

(IfNeeded)

No Orbit Trim Capability

No ODE and LO Capsule

Data

No Orbit Descent and Entry

and Landed Operations

Data

Achieve Either:

1. Near Fly-Bys

2. Far Fly-Bys

Results In:

1. PVI Nominal Mission

2. PVH Near or Far

Fly-By.

Converts two Deep Space

Missions to Degraded

Orbiting Missions

Converts two Deep Space

Missions to Degraded

Orbiting Missions (Less

ODE and LO Capsule

Data).

Results In:

I. PVI Degraded Mission

2. PVII Near or Far

Fly-By

Further Investigation
R eeommendation

Not Recommended

(Interface Complexity)

Recommended

Recommended

R ecommended

Recommend ed

Recommended

Recommended

Recommended

Recommended

r



Most of the discussion is devoted to pitch and yaw loop operation of the attitude control

electronics during the acquisition and cruise phases. The conclusions reached are extra-

polated to the roll loop, autopilot, and to other phases, as required. Time sharing of

digital equipment is considered where appropriate.

It is concluded that digital processing generally decreases guidance and control reliability

over that obtainable with the Task B design, which uses analog sensors, analog processing

and triple redundancy. The main factors leading to this conclusion are.

a.

bo

Co

do

eo

The processing performed by the attitude control electronics is simple and straight-

forward. There are no complex decisions to be made. The output choice to

operate a solenoid or not involves summing two signals and detecting ff a threshold

value has been exceeded. Digital processing would become more competitive

if the analog processing were more complex.

The error sensors which provide input data to the processor are all analog devices,

although both digital and analog sun sensors are available.

For configuration 1, the analog-to-digital conversion equipment is a major hardware

problem. Analog circuitry similar in design and quantities to the baseline Task B

system must be provided to condition the sensor signals and to carry out the A/D

conversion. In some types of A/D converters, the analog amplifier requirements

are more stringent, and the effects of failure are more disaster.us than in the

baseline system. Maintaining sensor resolution throughout the conversion

process is another serious problem.

For configuration 2, the digital hardware required is excessive, while there is only

a limited reduction in analog equipment. A/D conversion equipment is still required

for the gyro and Can.pus sensor signals.

Configuration 3 has a weight advantage if the requirement for triple redundancy of

the remaining analog attitude control electronics can be eliminated. Some of the

proposed techniques are unproven. Assuming success in those areas, the reliability

improvement is limited.

It is recommended that analog processing be retained for Voyager.
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2.4.9 ACCOMMODATIONOF ENGINE MALFUNCTION

A detailed trade studywas conductedto identify and evaluatealternate methods of

accommodatinganengine malfunction in the Voyager midcourse/orbit trim propulsion

system. The trade study was conductedusing the GE Task B MC/OT system as the

reference; however, the methods evaluated during this study are applicable to almost any

four engine system used for the midcourse andorbit trim maneuvers.

Three basic methods of accommodating an engine malfunction were investigated:

a. Canted engines.

b. Autopilot engine-out detection, including:

1. Jet vane angular position detection.

2. Excessive vehicle rate detection.

3. Gyro compensation network output detection.

c. Engine-out detection in the engine itself; i. e., by sensing chamber pressure.

The study report presents the detailed analyses that were conducted on each method. The

methods and their consequences are summarized in Figure 2-9. Table 2-4 shows the results

of the probability analyses by presenting the individual maneuver probabilities of success

for the three competing methods, for the Task B design without engine-out capability, and

for a perfect design.

It is concluded that engine-out sensing is the preferred approach to accommodate an engine

malfunction since it is independent of the autopilot loop, can easily be ground tested, and

results in consistent performance regardless of the maneuver parameters.

2.4. 10 LAUNCH GUIDANCE AND MIDCOURSE CORRECTION PHILOSOPHY

The prupose of this trade study was to assess the effect of various guidance and midcourse

correction maneuver policies on the probability of mission success. The study and report
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are divided in two parts: (1) the heliocentric transfer trajectory injection, which was con-

cerned with the aiming point of the launch vehicle; and (2) the premission guidance policy,

which was concerned with the basic guidance philosophy, and its application to representative

trajectories.

2.4. 10.1 Heliocentric Transfer Trajectory Injection

The minimum impulse first midcourse correction for each spacecraft is presented by aiming

the launch vehicle at the center of the planet capture area and then deflecting the launch

vehicle to ensure compliance with the allocated maximum allowable probability of planetary
-5

impact of 3 x 10 .

Alternatively, the launch vehicle can be placed on a trajectory having sufficient bias so that

no deflection is required, and the midcourse correction of each planetary vehicle can be

used to alter the trajectory to the desired aim point for planetary orbit insertion. The first

approach must be selected if the biasing required by the second requires an unacceptably

large increase in the velocity increment of the first midcourse maneuver of each spacecraft.

This portion of the trade study showed that, if the first midcourse correction of each space-

craft is in the order of 200 m/sec, the nominal AV required to achieve encounter separation

for 1973, then placing the launch vehicle on a trajectory from which no deflection is required

increases the size of the midcourse correction by less than 1 percent and is, therefore, the

recommended approach.

2.4. 10.2 Premission Guidance Policy

The purpose of this portion of the analysis was to determine the sequence of midcourse

maneuvers which best reduces trajectory errors at planetary encounter. The analysis

considered three aim point biasing techniques (radial, tangential, and minimum), the accuracy

of midcourse velocity execution, and the probability of planetary impact.

A digital computer program was developed for computing the encounter errors with three

midcourse corrections. Considerable parametric analyses were therefore feasible.
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One trajectory was selected for analysis from each of the 1973, 1975, 1977, and 1979 Mars

launch opportunities. In terms of final guidance errors, it was found that the times at which

the second and third midcourse corrections are made is not significant until the guidance

percentage errors are above about one percent. For larger errors, the best cases are a

function of the mission year and the aim point bias. For the minimum bias, executing

the second correction at midtrajectory produces the smallest error after three corrections,

except for 1979, where the best second correction time is 40 days after injection.

The second and third midcourse velocity impulse magnitudes are minimum when the second

correction is made 40 days after injection. For the most part, however, the differences in

the total velocity impulse between the second correction at 40 days and at the midpoint in the

trajectory are not very significant. The total velocity impulse magnitude is larger, however,

when the second correction is made 30 days before encounter.

The minimum aim point bias was investigated in depth, since this bias produced the most

favorable results. For the 1973 trajectory, the tangential bias is almost as good as the

minimum; in 1975 and 1977, the radial bias is almost as good as the minimum bias; and in

1979, the radial bias is as good as the minimum.
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SECTION3

SELECTION OF SPACECRAFT SYSTEMREDUNDANCY

3.1 OBJECTIVES

The objectives of the system redundancy activity were to develop techniques for the se-

lection of redundancy within the Voyager spacecraft system and to recommend a typical

allocation of such redundancy.

Redundancy at the system level involves the number and types .of hardware elements

(i. e., black boxes or components) which should comprise the spacecraft system. All

types of redundancy were considered to be within the scope of the study, including block,

multi-channel, standby and functional redundancy. Redundancy below the black box level

(i. e., the piece-part level) was not considered, except as required to determine the per-

formance characteristics of the black box under consideration.

It was in this area of the study that the Aeronautical Division of Honeywell, Inc.,

Minneapolis, participated. Section 3.6, which describes the optimization computer program

system, was authored by Honeywell.

3.2 ORGANIZATION

Described in this section is a new concept for the selection of spacecraft system redundancy--

that of selecting redundancy to maximize the expected worth of the mission. In contrast

to the conventional criterion of maximizing system reliability, this new technique is more

applicable to complex spacecraft which perform in many-faceted mission situations.

The system redundancy activity was divided into four major areas (Figure 3-1}:

ao

be

Mission Outcome and Worth Definition - Definition of an exhaustive and mutually

exclusive set of possible outcomes of the Voyager mission. Assignment of rela-

tive values, or worths, to these outcomes with the aid of a supporting rationale.

System Definition and Description - Categorization of the spacecraft system

into independent assemblies. Formation of families of independent assemblies,
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C°

d.

each family consisting of a single-string independent assembly void of any in-

tentional redundancy and alternate independent assemblies with varying degrees

of redundancy. Generation of a piece-part failure data base. Employing the

data base, assignment of reliability characteristics to the hardware elements

comprising the system independent assemblies.

S_S_S_S__stemFailure Modes and Mission Effects Analysis - Correlation of the failure
modes of the hardware elements within each independent assembly with the

performance modes of the assembly. Correlation of the performance modes of

the independent assemblies which comprise the spacecraft system with the re-

sulting outcomes of the mission.

System Design for Maximum Mission Worth - Development of a computer pro-

gram system employing dynamic programming to select, from all possible

system configurations with varying degrees of redundancy, that subset of system

configurations, each member of which has a greater mission expected worth than

all other systems of comparable weight, power, or cost. Exercise of the tech-

nique to recommend typical allocations of Voyager spacecraft redundancy.

FAILURE

MODES

AND MISSION

EFFECTS

ANALYSIS

MISSION

OUTCOME

AND WORTH

DEFINITION

SYSTEM

DE FINIT ION

AND

DESCRIPTION

SYSTEM

DESIGN

FOR MAXIMUM

MISSION

WORTH

Figure 3-1. Selection of Spacecraft System Redundancy Organization

The first three topics are covered in Sections 3.3, 3.4 and 3.5. Section 3.6 describes

the optimization program system and Section 3.7 discusses typical redundancy allocation

results. Section 3.8 discusses conclusions and recommendations for further activity.
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3.3 MISSION OUTCOMES AND VALUE

3.3.1 MISSION OUTCOME TREE

3.3.1.1 Mission Outcome Definition

The method used to describe mission outcomes is a tree diagram which is constructed

from the first level functions (or subphases) of the nominal Voyager mission profile.

Figure 3-2 is the Voyager mission outcome tree. A given first level function may form

multiple branches on the tree representing whether that function is performed in a good,

degraded or failed manner. Horizontal lines represent good states. Branches with nega-

tive slopes represent either degraded or failed states.

Using the first level elements of the functional flow diagrams to describe mission outcomes

provides a valuable link in the chain required to associate spacecraft hardware operating

states to mission value. Values are assigned to mission outcomes, which are described

by first level functions. First level hmctions, in turn, are broken down into subfunctions

defining discrete hardware items required to perform these functions. Hardware failure

modes (or operating states) are defined, and their effect on the functions to be performed

can be described. Thus, given that probabilities may be established for the operating

states of all single-string and potentially redundant hardware elements throughout the

mission, the probabilities of the various valuable mission outcomes may be determined.

The functional flow definition for the nominal Voyager mission is discussed in Section 2.

The first level functions (subphases) of the mission profile can be considered either in-

line or support functions. In-line functions generally define the spacecraft trajectory

functions and operating modes as they occur in the normal sequence of events. Support

functions describe those functions which are required by a variety of in-line functions

throughout one or more mission phases.

The mission outcome tree is constructed from in-line functions. Although they do not

specifically appear on the mission outcome tree, support functions are accounted for when
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considering the probabilities of the various operating states for each in-line function.

For example, for a given in-line function to be in the good state, all hardware elements

associated with that function and all support functions required for that in-line function

must be in specified operating states. The interfaces between the support functions and

in-line functions are defined by cross references in the functional flow diagrams.

The support functions associated with obtaining and transmitting data are treated in a

different way on the outcome tree. This is discussed in Subsection 3.3.3.2.

3.3.1.2 Trajectory Logic

Construction of the mission outcome tree required that a simplified but uniform rationale

be used to determine the effect of the success or failure to perform the various functions

associated with altering the planetary vehicle or spacecraft trajectory. For example, if

the second interplanetary trajectory correction fails, is it still possible to achieve Mars

orbit with the orbit insertion propulsion system ? The trajectory logic of Figure 3-3 indi-

cates that a far fly-by results; i.e., it was assumed that the orbit insertion propulsion

subsystem is not capable of achieving a Mars orbit given failure to perform the second

interplanetary trajectory correction. Exceptions to this simplified logic can be found;

however, this logic is representative of most likely effects of the types of failures

postulated.

The logic of Figure 3-3 is incorporated in the mission outcome tree (Figure 3-2). Table

3-1 defines, in general terms, the resulting trajectories and orbits. The deep space

and far fly-by trajectories are combined in the mission outcome tree since it was anti-

cipated that there would be little difference in their value. The near fly-by trajectory

results from a failure at orbit insertion. Since it is unlikely that the planetary vehicle

could be reoriented in sufficient time to acquire a significant amount of fly-by data, this

outcome is not extended beyond the orbit insertion subphase.

3-7/8



PRE LAUNCH

OPERATIONS

t LAUNCH

AND

INJECTION

" MISSION FAILURE 0

DEEP SPACE

INTERPLANETARY _

AJECTORY

RECTION I G

NO. 1

I [ INTERPLANETARY _'_

TRAJECTORY!
I CORRECTION IG

_NO. 2 ['--"

3-?



---------O

FAR FLY-BY 0

INTERP LANE TORY

TRAJECTORY

CORRECTION
NO. 3

G
POOR ORBIT

ii!o_
INSERTION

J _
GOOD

ORBIT
TRIM

NO. 1

O

ORBIT 0

/o_ _

\_o_i_ __,_o_

Figure 3-3. Simplified Trajectory Logic



Table 3-1. Definition of Trajectories and Orbits

Trajectory or Orbit Description

Mission Failure

Deep Space

Far Fly-by

Near Fly-by

Poor Orbit

Degraded Orbit

Acceptable Orbit

Nominal Orbit

Earth escape trajectory not achieved.

Escape trajectory achieved but closest Mars encounter

50,000 kin.

Closest Mars encounter between 5000 and 50, 000 km.

Some planetary data possible but value as Voyager

mission questionable.

Closest Mars approach between 500 and 5000 km.

Orbit from which capsule will enter exceeds design range.

If it survives, no entry or television data will be obtained

due to telecommunications range. Orbit does not allow

proper spacecraft mapping.

Capsule descent television data will not be obtained. Entry

data may be obtained. Orbit does not allow proper

spacecraft mapping.

Capsule descent television data may be obtained. Entry

data will be obtained. Orbit is good for spacecraft

mapping.

Orbit is good for both capsule and spacecraft functions.

Some trajectory functions may not have to be performed, depending on the results of the

previous corrections. For example, the third midcourse correction might not be required

if the second were successful and resulted in a trajectory very close to the nominal. Such

functions are indicated by the letter k on the mission outcome tree (k is the probability

that the function will be called on to perform). Note that k = 0 for the orbit trims if the

planetary vehicle is already in a nominal orbit.
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3.3.1.3 Interpretation of Mission Outcome Tree

The following interpretations should be used in reading the mission outcome tree (Figure 3-2}.

a.

b.

c.

d.

Line N.A. - Horizontal dotted lines tagged N.A. indicate that the performance

(or nonperformance} of that particular function is of no consequence, and no value

is associated with that function on that path of the tree.

Line k - Horizontal dotted lines tagged k = 0 indicate that the particular function

is not required on that path of the tree.

Line Ps - Horizontal dotted lines tagged Ps = 0 (used for orbit trim functions}

indicate that the probability of success of that function is zero (i. e., the liquid

propulsion subsystem has previously failed}. Lines tagged Ps = 0 or Ps = 1
for the capsule functions are discussed in Subsection 3.3.3.3.

Arrows - Dotted lines with arrows are used to show coalescing of nodes to

simplify drawing the tree.

3.3.2 VALUE RATIONALE

3.3.2.1 Types of Value

Direct value (or worth} arises from the new knowledge that a mission produces. For

example, television maps of Mars or surface temperature data belong in this category.

On the other hand, national prestige, providing stimuli for the economy, satisfying man's

urge to explore, and other less tangible objectives,are defined as having indirect value.

For the system redundancy selection, only direct components of mission value are

considered.

Direct value can be further subdivided into scientific and engineering value. For example,

insertion of the planetary vehicle into a Mars orbit has little scientific value, yet it has

important engineering value.

3.3.2.2 Scientific Value

The assignment of worth is a subjective undertaking; there seems to be no completely

deterministic method of calculating worth. Rigorous approaches may lead to mathematical
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equations. However, there will always be some factor or constant in the expression which

dependson humanjudgment. Recognizing the subjective nature of value and that the final

value assignmentsmust be madeby Voyager project management, the following approach

"is usedto derive scientific values. The objectives of the Voyager missions to Mars are

stated* as:

"Obtain information relevant to the existence and nature of extraterrestrial
life; the atmospheric, surface and body characteristics of the planet; and

the planetary environment by performing unmanned experiments on the

surface of and in orbit about the planet. "

With the aid of the 1965 Woods Hole report**, it is possible to break down the mission

objectives into a more detailed list of scientific measurements. The grouping of experi-

ments into categories is based on the priorities established in the Woods Hole report and

is used for assigning worth numbers to the experimental categories shown in Table 3-2.

Each experiment in the table is linked to instruments proposed for the 1973 spacecraft and

capsule scientific payload***.

The emphasis in the Woods Hole priorities is on biological investigations, and this emphasis

is reflected in our value assignments. However, emphasis also is placed on those environ-

mental conditions which have an important though indirect bearing on biology. Therefore,

the ratio between the indirect and direct categories is set at 65_5. Note that life detection

is totally assigned to the landed package, whereas the environmental science is divided

among the landed, descent and orbital phases.

* "Voyager 1971 Preliminary Mission Description, " Jet Propulsion Laboratory,

October 15, 1965, page ii.

** "Space Research: Directions for the Future, "Space Sciences Board, Woods Hole,

Massachusetts, 1965, pages 13-15.

*** "Voyager '73 Instrumentation for Experiments, " Space/Aeronautics, January 1967,

page 56.
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The value numbers of Table 3-2 are further subdivided to show what fraction of the total

value can be obtained during the orbital operations phase (O: 31 percent}, the entry and

descent phase (D:ll percent), and the landed operations phase (L: 58 percent}.

The criteria employed for instrument selection and value assignments within the general

categories of Table 3-2 are summarized as follows:

a.

b.

interplanetary experiments are generally relegated to less sophisticated vehicles

than Voyager.

Only conventional instrumentation available by 1973 is considered. Much of the

instrumentation has been developed on other programs, such as Mariner and

Surveyor. Experience and data obtained in these programs are taken into con-
sideration.

c. Parameters to be measured are of a direct nature wherever possible.

d. Lander operation is based on a 150 pound survival package operable on the surface

for approximately two days.

e. Minimum mobility and sample preparation capability are assumed in the landed
phase.

3.3.2.3 Engineering Value

Each first level, in-line function contained in the Voyager mission functional flow diagrams

is assigned a relative engineering value in terms of a percentage of the total engineering

value. The following rules were adopted:

a.

b.

c°

dl

The value of a function performed for the first time during this mission is set at

double that of a comparable function which has been performed during previous missions

(e. g., sterilization canister separation).

In addition, the value of a function is doubled or tripled if it has extraordinary

engineering significance; e. g., performance of orbit insertion.

The value of a function performed successfully during many previous missions

is halved; e.g., achievement of parking orbit,

The value of a discontinuous function is halved for each repeat performance;

e. g., trajectory corrections.
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e. The value of continuousevents is assumedto decrease exponentially with per-
formance time; e.g., interplanetary cruise.

The engineering value assignedto the mission subphaseaaccording to these:rules is

tabulated in Table 3-3.

3.3.3 TREE VALUE ASSIGNMENTS

3.3.3.1 Outcome Tree Branch Values

The engineering value numbers in Table 3-3 are arranged in such a way as to be directly

applicable to the in-line, first level functions shown in the top line of Figure 3-2, the out-

come tree. The scientific value numbers can be transferred similarly from Table 3-2 to

Figure 3-2. Accordingly, each in-line, first level function across the top of the mission

outcome tree has both a scientific and an engineering value associated with it.

The mission outcome tree contains some branches denoting degraded modes of the first

level functions. Obviously, a degraded mode should be credited with only a fraction of

the total function scientific and engineering value. The assignment of fractional value

numbers to the branches of the tree in Figure 3-2 is based on scientific and engineering

judgment.

The worth of an outcome on the tree is simply the sum of the worth of the branches which are

traversed to arrive at the outcome. Thus, the final step in assigning value is to sum the

scientific and engineering value numbers assigned to the branches to arrive at total value

numbers for each outcome. Combining scientific and engineering value is somewhat similar

to comparing apples and oranges. Yet, if one considers each engineering achievement as a

stepping stone toward more scientific return on a future mission, then the two are closely

related. Since the primary goal of the Voyager program is scientific, the total engineering

value should not exceed the scientific value. On the other hand, an early flight like the

1973 mission will be important in the development of a system capable of satisfying the

overall Voyager project objectives, including landing complex biological laboratories
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in 1977 and 1979. Thus, the engineering value of the 1973 mission cannot be far below

the scientific value. Therefore, equal weighting of scientific and engineering value is

judged appropriate for the 1973 mission.

3.3.3.2 Quality Functions

Functions associated with obtaining and transmitting data may be considered as quality

functions which modify the value of the in-line functions. The total value associated with

performing orbital operations, for example, from a nominal spacecraft orbit should be

realized only if the data obtained from such an operation is received on earth. Partial

receipt of this data should result in partial realization of the total value. Accordingly,

degraded states are defined for the functions associated with obtaining and transmitting

data to accommodate less than perfect performance for these functions. These degraded

states are defined in Table 3-4.

The tabulations at the bottom of the mission outcome tree list the value coefficients

associated with the operating states of these quality functions for each mission phase.

For example, during the transit phase, Function 5.7 ° Obtain and Transmit Data, may

have four possible states: good, degraded-one (D1), degraded-two (D2), or failed. These

states are defined so that they are mutually exclusive and exhaustive.

3.3.3.3 Capsule Expected Value

For non-spacecraft functions, such as those performed by the capsule, engineering

estimates are made of the probabilities that the functions will be successfully performed.

Since both the probabilities and values of these functions are fixed, the capsule portion

of the outcome tree is reduced to a single expected capsule value. This expected value

is accrued for any mission outcome which provides the capsule system an opportunity to

perform.

In the outcome tree of Figure 3-2, capsule expected value is divided into the value

associated with orbit descent and entry and that associated with the landed operations.

This division is necessary since it is possible to loose the capsule value associated with
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orbit descentand entry (e. g., the radio relay link on the spacecraft fails), but obtain that

of landed operations. The probability of successnumbers on the branches of the outcome

tree indicate the probability that the capsule expectedvalues will be obtained.

Table 3-4. Definition of Quality States

First Level Function

5.7

4.4

3.9

2.4

Obtain and Transmit
Data (Transit)

Obtain and Transmit Data
(Orbit Achievement)

Obtain and Transmit Data
(Orbit Descent and
Entry)

Obtain and Transmit
Data (Orbiter
Operations)

States of Interests

G: Obtainall engineering data.

DI: Obtain only science data.

D2: Obtain only engineering data.

F: All others.

Same states as for 5.7.

Same states as for 5.7 (Note: Capsule relayed data

is considered science data}..

G: Obtain all engineering and science data.

Dl:Obtain less than all science data, but at least

one type of video and one type IR data at a data

rate comparable to that achievable with the

3 watt amplifier through the high gain antenna.

Obtain all engineering data.

D2: Obtain less science than D1, but at least some

good video data, with or without engineering data,

D3: Obtain engineering data only.

F: All others.

3.3.4 DOCUMENTATION

The Voyager mission outcome tree was developed and first published in Technical Memo-

randum VOY-C3-TM21. The assignment of value and the supporting rationale to complete

the mission value model is contained in Memorandum VOY-C3-TM25.
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3.4 SYSTEM DEFINITION AND DESCRIPTION

To develop the system optimization tool for the application of redundancy, it is necessary

to establish a hardware level at which a configuration can be uniquely and conveniently defined.

The establishment of such a hardware level to serve as a common denominator is an

evolutionary process. At one extreme are piece-parts, with their individual failure modes

and failure rates. At the other extreme is the hardware associated with the major mission

functions, such as interplanetary cruise and orbit injection. The piece-part level is

certainly not desirable, since piece-part definition is often not available during the preliminary

design phase when such a tool is required. In addition, grouping the total number of

piece-parts into assemblies presents a formidable bookkeeping problem for just one system

configuration, let alone a large number of different configurations. The mission function

level also is not desirable, since it must be correlated with many hardware assemblies, some

of which perform other mission functions.

In the process of developing the tool, the common denominator evolved by working

simultanteously upward from the piece-part level and downward from the mission functions.

The result was the definition of "families" of "independent assemblies" as the common

denominator. Both of these terms are discussed in detail in later sections of this report,

Briefly, any Voyager spacecraft configuration consists of 51 unique independent assemblies,

each a member of a different family. Members of the same family must perform the same

functions, and only one member can be incorporated in any one particular spacecraft. One

such member of each family is the single-string independent assembly, and others have

redundancy incorporated in varying degrees. Since many candidates are often possible for

any one family, a large number of spacecraft configurations is possible because of the large

quantity of combinations.

The analogy depicted in Figure 3-4 is appropriate. Consider the Voyager spacecraft as a

set of books, each volume in the set representing a member of a different family. Any one
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Voyager spacecraft, for example, is specified whenthe 51places for the books are each

filled with a volume from the appropriate family. It is illegal to place a member of family

46 in the slot reserved for family 32. This conceptis elaborated upon in the next section.

_S SYSTEM _i

UISY_TIM T SUISISTENI TSU BSYSTEM"_SU BSY STEM q

 III:ILIll
/

/
/

/

[; C
SINGLE - STRING _'

INDEPENDENT

ASSEMBLY

\
\

1II
ALTERNATE INDEPENDENT ASSEMBLIES

WITH POTENTIAL REDUNDANCY

J

FAMILY

Figure 3-4. Concept of Independent Assemblies

3.4. 1 INDEPENDENT ASSEMBLY AND FAMILY DEFINITION

To divide the Voyager configuration into hardware groupings of manageable size for the sub-

sequent application of redundancy, the concepts of independent assemblies and families

of independent assemblies were developed.

First, the Voyager spacecraft, as developed by General Electric during Task B, was

divided into six subsystems:

a. Computer and Sequencer

b. Power
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c. Guidance and Control

d. Engineering Mechanics

e. Propulsion

f. Telecommunications.

Each of the above Task B subsystems was then subdivided into several independent assemblies.

Essentially, an independent assembly is a grouping of hardware elements, the failure modes

or states of which are probabilistically independent of those of other independent assemblies.

At this point, the system categorization was correlated with the single-string and redundant

alternate definition disucssed in Section 2. 3, and a single-string implementation was

associated with each independent assembly. In a few cases, the Task B independent assembly

was identical to its single-string counterpart.

The need to discuss Task B independent assemblies as well as their single-string counter-

parts gave rise to the concept of a family of independent assemblies. Thus, the definition of

an independent assembly was expanded to include the concept of a family:

a.

b,

An independent assembly can be replaced in its entirety by any other independent

assembly from the same family of independent assemblies.

All functions performed by the single-string assembly of a family can be performed

by any alternate independent assembly in that family.

The single-string independent assembly in each family thus constitutes a baseline reference

for the application of redundancy within that particular family. In addition to the Task B

independent assemblies, additional independent assemblies with varying degrees of

redundancy were formulated from the potential redundancy previously proposed and discussed

in Section 2.3.
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The following is the final breakdown of the number of families and independent assemblies

by subsystem:

Subsystem

Computer and Sequencer

Power

Guidance and Control

Engineering Mechanics

Propulsion

Telecommunications

Totals

Number of Families

Number of

Independent
Assemblies

12 37

8 49

7 27

13 24

8 18

3 11

51 166

Since 51 of the 166 assemblies are by definition single-string, 166-51 = 115 redundant

alternate independent assemblies were postulated, or an average of 2.3 redundant independent

assemblies per family.

As defined, a spacecraft system configuration is found by taking one and only one independent

1021assembly from each family. Given 166 assemblies and 51 families, some possible

systems can be formed. The task of extracting the best ones is indeed a trade study of

the first order.

In order to account for launch vehicle and spacecraft science effects (the spacecraft science

is not considered within the area of redundancy investigation for this study, but could be

easily included in future work), eight science families and two launch vehicle families,

each having only one independent assembly, are defined. These are referred to as pseudo-

independent assemblies.

A complete computer printout listing of each independent assembly (including the family

name and related data)is included on the foldout page that follows. Each independent
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assembly is uniquely identified by a three letter code. From left to right, the first letter

denotes the subsystem (or system, in the case of the launch vehicle) as follows:

Subsystem Symbol

Computer and Sequencer C

Power E

Guidance and Control G

Launch Vehicle L

Engineering Mechanics M

Propulsion P

Science S

Telecommunications T

The second letter represents the family of the subsystem, and the third letter represents

the independent assembly of that family. The single-string independent assembly is

always identified by A as°its third letter. Any Task B independent assembly is identified

with an asterisk immediately to the right of its three letter code.

To illustrate this breakdown, the guidance and control subsystem is divided into seven

families of independent assemblies for which a total of 27 possible independent assemblies

are defined. This breakdown is as follows:
D

Family
Independent

A s sembly

GA

GB

GD

GE

GF

GG

GH

Family Description

Attitude Control Sensors and Electronics

Gyros and Electronics

Pneumatics Subassembly

Attitude Electronics Power Supply

Autopilot Electronics

Logic Control Unit

Gyro Package Power Supply

Total

Number of

Independent

Assemblies

6

4

7

2

3

3

2

27
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Family GB, for example, consists of the following set of four independent assemblies:

GB = Single-string design.

GBB = Block redundant gyros and electronics

GBC = Twin-axis gyros and associated electronics.

GBD = Block redundant gyros and electronics with majority logic sensing and switching.

In family GB, GBB is the GE Task B independent assembly.

3.4.2 INDEPENDENT ASSEMBLY COMPOSITIONS AND CHARACTERISTICS

To assess the reliability and constraints associated with each independent assembly, the

detailed component (black box) composition of each independent assembly was tabulated and

documented in Technical Report VOY-C3-TR9, "Voyager Independent Assembly Reference

Tables for the Voyager Spacecraft Redundancy Study. "

The component level within the independent assembly is that level at which, in general,

failure characteristics of the hardware can be described in terms of a constant failure rate

per unit time or a constant failure rate per number of cycles or trials. The calculation of

component failure rates (and the failure rate data base from which component failure rates

were derived) is discussed in detail in Subsection 3.4.3.

All independent assemblies also are defined in terms of cost, size, weight and power. A

complete tabulation of costs per independent assembly is included in the system definition

printout. In this study, the only cost used for system optimization via the application of

redundancy is weight. However_ the optimization computer program can handle up to four

costs (e. g., weight, power, volume, and cost), but optimizing only on one at a time.

To illustrate the foregoing, Table 3-5 is an excerpt from Report VOY-C3-TR9, illustrating

the tabulation of components in families GA and GB.
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Table 3-5. Guidance and Control Independent Assembly Characteristics

7

Family Symbol: GA

Component

Reference No. Component Description

15001A

15001B

1500IC

15001D

15001E1

15001E2

15001F

15001G

150011

15001J

15001L

15001M

16001N1

15O0IP

15001Q

22001A

22001B

22002

22003

22004

22006

Cruise Sun Sensor Elec-

tronics-pitch

Cruise Sun Sensor Elec-

tronics-yaw

Sun Gate Electr_qics-

Course

Sun Gate Electronics-

Fine

Fine Sun Sensor By Pass

Switch

Canopus Search By Pass

Switch

Derived Bate Network

Summing & Threshold

Electronics

Canopus Buffer Electronics

Acquisition Sun Sensor

Electronics

Roll Bias Generator

Gyro Buffer Electronics

Majority Voter

Failure Detection & Switching

Logic

A/C Electronics Switching

Logic

Sun Gate Sensor-Fine

Sun Gate Sensor-Coarse

Cruise Sun Sensor

Secondary Acquisition Sun

Sensor

Canopus Tracker #1

Canopus Tracker #2

Weight (pounds)

Power (watts)

Incremental weight (pounds)

Incremental power (watts)

Family Name: A/C Sensors and Electronics

Quantity of Components in Independent Assembly

GAA GAB GAC GAD GAE

1 3 3 2 2

l 3 3 2 2

1 l l 1 1

l 1 1 1 l

3 9 9 6 6

3 9 9 6 6

1 3 3 2 2

2 6 6 4 4

l 3 3 2 2

3 9 9 6 6

12 12

GAF GAG

l 1

1 1

l 1

l 1

l

l

3 3

3 3

l 1

2 2

1 l

3 3

1

1 1 1 1 1 1 l

1 1 1 1 1 l 1

2 2 2 2 2 2 2

2 2 2 2 2 2 2

1 l t l l t 1

l 1 l 1 l l 1

17.70 24.30 26,90 21.00 22,00 18.40 17,90

7.20 28.20 27.90 15,60 16,10 7.90 7.45

- 6.60 9.20 3.30 4.30 0.70 0.20

21.00 20,70 8.40 8.90 0.70 0.25

Component

B eference No.

I50O3A

15003B

15003F

I50O3H

150031

15003J

15003K

15003S

Family Symbol: GB

Component Description

Gyro-Single Degree of

Freedom

Gyro Electronics

Tor0ue Current Generator

& Logic

Heaters & Temp. Control

& Electronics

Two Axis Gyro

Combined Two Axis Out-

put Detector Logic &

Switching

Dual Bed. Single Gyro

Switching

Dual R(_I. (;yro Pkg.

Switching

Weight (pounds)

power (watts)

Incremental weight (pounds)

Incremental power (watts)

__ Family Name: Gyros and Electronics

GIIA

3

3

3

3

7.30

l0.80

Quantity of Components in Independent Assembly

1GR°1GRC0060
6

1

i

15.60!

22.10

6.30

11.30

20.6(]

26.6(]

13.3(]

15.8(]

GBD

6

6

6

6

3

16.60

23.00

9.30

i2.20
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A summary of weight and power for these families is found at the bottom of the tables.

convenience, weight and power are given both absolutely and incrementally above the

single-string assembly.

For

Independent assemblies must also be described in terms of the output states of interest,

the final column of the system definition printout. This concept is discussed in detail in

Section 3.5.

3.4.3 RELIABILITY CHARACTERISTICS

In order to study redundancy within the spacecraft system, failure rates or reliabilities for

the various components (i. e., black boxes) which make up a system must first be established.

Further, this should be accomplished in some uniform manner so that the results of the

study can be viewed with validity.

Accordingly, a standard failure data base at the piece-part level was developed to serve as

the reference for assessing hardware reliabilities. It was published in interim form in

Technical Report VOY-C3-TR5, and in final version in VOY-C3-TR8.

The piece-part data base was developed by first examining the available published failure rate

literature and selecting sources of data for the data base. A rationale was then established

to combine data from several sources and to project the resulting failure rate to the bases

of 1970 and high reliability parts procurement.

It should be recognized that data was not available to the same extent in all areas. In some

cases, the availability of information was excellent and predictions were readily accomplished,

while in others, considerable extrapolation was necessary. Further sensitivity studies

should be conducted in those areas where considerable extrapolation was involved to deter-

mine its effect upon the system configuration.
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3.4.3.1 Failure R ate Data B as e

It has been found that the use of past failure rate determinations to make future predictions

leads to unduly pessimistic results, because the data base fails to account for improve-

ments such as better parts availability, better design techniques, and technology changes

(e. g., tubes to transistors to integrated circuits). To compensate for this, a better

approach is to attempt to measure past failure rates versus time, and thus project more

accurately the reliability growth of the piece-parts in question.

Similarly, by studying data on high reliability programs such as Minuteman and Apollo,

high reliability improvement factors can be estimated to indicate the relative improvement

to be expected by using high reliability parts over a lower reliability level. Three

reliability levels were recognized in this study: (1) a standard level, (2) a level

incorporating certain parts screening techniques, and (3) a high reliability level

incorporating comprehensive part specifications, extensive screening techniques, and

rigid process control.

To establish a meaningful failure rate data base, a careful selection of several sources

was made according to the following criteria:

a. The sources had to be representative of aerospace applications.

b. The sources had to be representative of varying degrees or levels of

reliability.

c. The sources had to be representative of leading aerospace manufacturers.

Using these criteria, 19 sources were selected for the piece-part failure rate data base.

Indirectly, however, more than 19 sources were included in the data bank, since several

of the sources were, in themselves, multiple sources.

The rationale used in obtaining the recommended part failure rates included several

factors. First, it was assumed that Minuteman level parts would be used in Voyager to

the greatest extent practicable. Therefore, Minuteman failure rates were used directly
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without adjustment for reliability growth. Apollo failure rates (via Honeywell, Inc. )

were used in a similar manner for a limited number of parts for which datawas

inadequate. Reliability growth factors were then established for projection of failure

rates from the various sources to a 1970parts procurement period. For Mariner 1964,

for example, it was assumedthat the piece-parts were procured in 1962. A 2:1

reliability growth factor was estimated for mechanical andpyrotechnic parts for the

time period from 1962to 1970, and a 5:1 growth factor was estimated for electronic

parts over the sameeight-year period.

AOSO,another source, was assumedin its reliability level to lie betweenMariner 1964

andprograms such as Minuteman andApollo. Becauseof the higher initial parts

reliability, the trend toward growth saturation appears sooner and the potential

reliability growth was assumedto be less than for parts starting at lower reliability

levels. On this basis, a 2:1 reliability growth factor was assigned for all AOSOparts.

The AOSO, Apollo, Mariner, and Minutemanprograms all incorporate a higher degree

of reliability than does the average aerospaceprogram. Therefore, no factors were

included for adjusting those rates to a high reliability status; it was assumedparts used

on these programs were already in that category.

For two other sources, Honeywell Inc. and MIL-STD-217A,the reliability growth factor

for part failure rates was estimated to be over a 10-year period. The parts from these

two sources, in general, were not representative of high reliability. Therefore,

additional factors of 5:1 (for Honeywell) and2:1 (for 217A)were established to translate

these part rates to high reliability status.

The failure rate projections for parts requiring a more sophisticated failure rate

evaluation, such as integrated circuits and gyros, were established by RedundancyStudy

reliability specialists. For caseswhere quantitative failure rate data did not exist or

was inadequate, failure rates were derived by comparing the parts with other similar

parts for which reliability information was available.
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In summary, the ground rules and assumptions which were followed in developing the

Voyager 1973 failure rate data base were:

a.

Do

co

do

Minuteman level parts were used to the greatest extent practicable. Minuteman

and Apollo failure rates were used without adjustment for the Voyager 1970

parts procurement.
w

Curves (previously developed by Honeywell) showing the projected reliability

growth for inertial components and integrated circuits were used for

estimating the 1970 failure rates for these devices.

Factors to reflect (1) parts reliability growth and (2) upgrading to a high

reliability status were used to obtain the 1970 failure rates for sources other

than Minuteman and Apollo.

Where failure rate data was lacking or inadequate, failure rates were derived

by comparing the part in question with another part of similar construction

or performance for which reliability infomation was available.

The following example illustrates the failure rate development process:

Thermostat

Source: Honeywell
Failure rate = 0.370%/1000 hours

Reliability growth factor = 10:1 over a 10-year period

Period between establishing of rates and 1970

High reliability upgrading factor

Recommended 1970 failure rate

= 5:1

= (0. 370)
(io/ x (5)

= 4 years

= 0. 030% per 1000 hours

The remaining failure rates were derived in a similar manner using projection and

adjustment factors previously defined.
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Table 3-6 lists the recommended mechanical, pyrotechnic, and electronic part failure

rates for the Voyager hardware reliability models, which were published in Report

VOY-C 3-TR 8.

3.4.3.2 Component Reliabilities

The piece-part failure rates of Table 3-6 were employed as the basis for calculating

reliabilities of both single-string and redundant alternate components or black boxes

of hardware, by combining individual piece-part rates in appropriate manner to

establish the overall rate for the components. A complete listing of all Voyager

single-string and potentially redundant hardware reliabilities was published in Technical Report

VOY-C3-TRT.

The development of failure rates on a component basis was a formidable task. Since

the components ranged considerably in their complexity and degree of definition,

various approaches were used to arrive at their reliabilities. Each component was

categorized as one of the following:

a.

b.

c.

do

The component corresponded directly to an identified piece part for which the

failure rate was given in the piece part data base.

The component consisted of N identifiable piece parts, and failure of any given

piece part caused failure of the component. The failure rate was defined as the
sum of the N individual rates.

The component consisted on N identifiable piece parts, and failure of certain

piece parts did not necessarily cause failure of the component. The component

failure rate was defined as the sum of the rates of the piece parts which did
contribute to failure.

The component design was not clearly defined in terms of individual piece l:arts.

In these cases, the rate was determined from comparison with similar components,

rather than by an individual piece part breakdown.

One of the tables in VOY-C3-TR7 is included as Table 3-7.
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Table 3-7. Reliability Characteristics of Propulsion Subsystem (P) Components

COMPONENT

REFERENCE

NO.

260O2

28001A1

28001A2

28001B

2800IC

28001D

28001E

28001F

28001F

28001G

28001H

28001J

28001K

28002

28003

28004

28005

29001

29002

29003

29003A

29003R

29004

29005A

29005A

29005B

29005B

29006

29007

29007

29008

29009

29010

29011

29012

29012

29013

29014

29015

29016

29017

29018

29019

29020

29021

29022

29023(d)

COMPONENT DESCRIPTION

Squib (Redundant Type)

Solid Engine Assembly-Less Nozzle

Solid Engine Assembly-Nozzle Only

Hydraulic Pump and Reservoir

Servo Injector Valve

Explosively Operated Valve-Normally Closed

Pressure Regulator

Freon and Tankage - Steady State

Freon and Tankage - Vibration State

Burst Disk

Igniter Motor Assembly

Nitrogen and Tankage

Explosively Operated Valve - Normally Open

Tapered Strut

Kick Ring

Tubular Strut

Kick Ring

Monopropellant Engine

Jet Vane Assembly

Propellant Solenoid Valve (Quad)

Propellant Solenoid Valve - Single

Solenoid Valve Driver

Cavitating Ventu ri

Burst - Disk, Premature Opening

Burst - Disk, Fails to Open on Pressurization

Relief Valve - Premature Opening

Relief Valve - Not Opening on Pressurization

Two Position Explosive Valve

Filter

Filter

Explosive Valve, Normally Closed

Explosive Valve, Normally Open

Fill/Vent Valve

Pressure Switch

Pressure Regulator - Overpressurization

Pressure Regulator - Underpressurization

Pressure Transducer

Lines, Trays, and Brackets

Support Structure

Propellant Tank

Bladder

Pressurant Gas

Gas Tank

Propellant Tank Support

Tank Support Tubes

Mounting Frames

Monopropellant

FAMILY

PA, PC, PP

PM

PM

PQ

PQ

PN, PP

PP

PQ

PQ

PP, PQ

PM

PN

PP

PM

PM

PM

PM

PD

PD

PD

PD

PD

PD

PB, PC

PB, PC

PB, PC

PB, PC

PB

PA, PB, PC

PN, PP

PA, PC, PD

PA, PC

PN, PP, PA, PB, PC

PB

PB

PB

PA, PC, PD (a)

PA, PB

PB

PC

PC

PA

PA

PC

PC

PC, PD

PC

a) Not required for operating success

b) Disregarded in computations because of low failure rate

c) Failures per million cycles or trials

d) Also identified as 30001

e) Failures per million cycles per contact pair

f) Considering all failure modes

FAILURE

RATE

(_/10OO HRS

UNLESS OTHER STRESS

%VISE NOTED) NOTE

5 (c) 3

900 (c) 3

460 (c) 3

0. 3675 2

29.5 (c) 3

53 (c) 3

0. 0030 2

O. O001 2

200 (c) 3

0. 0070 2

5 (c) 3

0. 0029 2

53 (c) 3

0.0000 (b) N.A.

o. oooo (b) N.A.

O. O00O (b) N.A.

o. oooo (b) N.A.

I. oo (c) 3

3.3312 4

o. 65 (c) (0 3

0.0054 1

0.0000(b) N,A.

0.0020 4

0.0050 4

0.0570 4

0.1418 4

79.5(e) 3

0.0006 4

0.0006 2

55(_ 3

53(c) 3

O.O00O(b) N.A.

O. 14 (e) 4

0.1200 4

0.1200 4

0. Ol00 N.A.

0.0000(_ N.A.

0.OOO0(b) N,A.

0.0016 4

0.0013 4

0.O000(b) N.A.

0.0029 4

0. OO0O(b) N.A.

O. OOO0(_ N.A.

O.O000(b) N.A.

O.0O0O(b) N.A.
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3.4.3.3 Application of Stress Factors

In order to include environmental effects during the mission, an approximate approach was

taken, viz., the failure rate of each of the components of hardware was multiplied by one

of four stress factors:

a. Multiply the tabulated failure rate by 10 during launch motor and orbit injection

motor burns, and multiply by unity during other time intervals.

b. Multiply the tabulated failure rate by 80 during launch motor and orbit injection

motor burns, and multiply by unity during other time intervals.

c. Multiply the tabulated failure rate by unity at all times.

d. Multiply the tabulated failure rate by 80 during all motor burns, including

midcourse burns, and multiply by unity during other time intervals.

In general, stress factor (a) was applicable to electronic components with Poisson

reliability characteristics; stress factor (b) to mechanical components (except liquid

engine components) with Poisson reliability characteristics; stress factor (c) to

pyrotechnic components, cyclic devices, and one-shot devices; and stress factor (d) to

liquid engine mechanical components with Poisson reliability characteristics.
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3.5 HARDWARE FAILURE MODES AND MISSION EFFECTS

3.5.1 CONCEPT

The concept of independent assemblies was developed to accommodate the complex hardware

failure modes-mission outcome correlation. It provides a systematic means of organizing

single-string and potentially redundant hardware alternatives into intermediate level assem-

blies with common performance states which have a direct relationship on the success or

failure of the mission subphases.

The hardware failure modes and mission effect analysis thus becomes a two step process.

First, the failure modes of hardware elements which comprise each independent assembly

are each correlated to the performance states defined for that family of independent assemblies.

This correlation results in what are called the math models of the independent assemblies.

The component failure characteristics discussed in Section 3.4 then provide the quantitative

base used by the models to determine the probability of the independent assembly performance

states. Such a model is constructed for each independent assembly.

The second step of the process relates the performance states of each independent assembly

family to the mission outcome tree via the medium of a map matrix. This matrix indicates

the independent assembly family performance states which are necessary to achieve each

mission subphase. Since the probabilities of the performance states of any set of independent

assemblies can be determined from their math models, the map matrix provides the logic

to compute the probability of any subphase of the mission outc_ne tree. Thus, the correlation

of hardware failure modes to mission outcomes is complete.

3.5.2 MATH MODELS

3.5.2.1 Process

Part of the definition of any independent assembly includes a description of the output states

of interest of that particular independent assembly. The most common case is that of the

two state independent assembly; i.e., a good and a failed output state of interest. Other
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independentassemblies have three output states of interest: good, degraded, and failed.

Still other independent assemblies have more than three output states of interest denoted

good, degraded state 1, degraded state 2, etc., and failed. Recall that all of the independent

assemblies in one family have the same output states.

To illustrate independent assembly states, consider one of the guidance and control families,

family GB, the Gyros and Electronics family. This family contains four independent assem-

blies, all of which have the same three output states, defined as follows:

a. Good - Gyro package operates in beth position and rate mode about all axes.

b. Degraded - Gyro package operates in rate mode about all axes, but fails to

operate in position mode about one or more axes.

c. Failed- All others.

For each of these independent assemblies, it is necessary to arrive at the probability that

the independent assembly will be in one of its defined output states at various times throughout

the mission. To accomplish this, a math model is developed to relate the operating states

of the various hardware elements which make up that independent assembly to the output

states defined for that independent assembly family. For each of the 166 independent assem-

blies, a different math model must be formulated. From a given model, the probabilities

of that independent assembly being in one of its defined output states at any time in the mission

may be calculated. As would be expected, similarities exist between the math models for

independent assemblies belonging to the same family.

Formulation of the math model for any independent assembly generally involves the following

steps:

a. A reliability block diagram is drawn to indicate which components within the inde-

pendent assembly are required for the defined operating states. For the single-

string independent assembly of a family, the reliability block diagram is usually

a series string of all components which make up the independent assembly.
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bt

C.

do

An operating time profile is developed for each component within the independent

assembly to define its operating time history throughout the mission. For cyclic

or one-shot devices, the appropriate number of operating cycles are defined.

Failure characteristics, the development of which has been discussed previously,

are assigned to the various components which make up the independent assembly.

Items a, b, and c are converted to a state diagram for input to a computerized
probability calculator.

3.5.2.2 Reliability Block Diagrams

For each of the 166 independent assemblies, reliability relationships are defined by drawing

reliability block diagrams. Blocks on such diagrams are analogous to links of a chain. For

example, in the following serial relationship,

C

components A, B, and C must all be working successfully for the assembly to be working

successfully. In the following parallel (or block redundancy} relationship,

Iol

component A or B or C alene working successfully is sufficient for the assembly to be

working successfully.
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It shouldbe notedon a reliability block diagram that the order of placing blocks in the chain

has no significance. Also, explanations are required in a reliability block diagram if the

relationships are more complicated than the foregoing parallel relationships.

Figure 3-5 contains actual reliability block diagrams of independent assemblies CFA and CFB,

both of which are in family CF (Capsule Separation Register) of the computer and sequencer

subsystem. CFA is the single-string candidate for this family, and CFB is a redundant alter-

native.

3.5.2.3 Operating Time Profiles

For each component in the reliability block diagram, an operating time profile is developed.

The profile is segmented by mission subphases corresponding to those of the mission outcome

tree. For each subphase the time profile further indicates whether the components are plan-

ned to be energized for the entire subphase or just a portion thereof, or are operated for a

specific number of cycles during the subphase.

14022

CFA

14023 ' 14024

(2 OF3)

__J 14022NO. I

14022
NO. 2

14022
NO. 3

CFB

14023
NO. I

14023NO. 2

14025

Figure 3-5. Typical Reliability Block Diagran_ Family CF (Capsule Separation Register)
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3.5.2.4 Failure Rate Assignments

Each of the components used in a particular independent assembly are thus identified as a

block in a reliability block diagram and a line entry in the operating time profile. The

reliability characteristics for each component, consisting of nonstressed failure rates and

appropriate stress factors, are then determined from the failure data base. These rates,

applied in accordance with the operating time profile, provide the quantitative data for the

independent assembly math models.

3.5.2.5 State Diagrams

Using the reliability block diagrams and operating time profiles previously described, state

diagrams are next developed for each of the independent assemblies. State diagrams

depict all possible internal operating states of a particular independent assembly and define

the allowable transitions from one state to another. Output states of interest are a subset

of all possible internal states of each independent assembly.

Figure 3-6 is the state diagram for independent assembly CFB, for which the reliability

block diagram is illustrated in Figure 3-5. In this example, there are six internal operating

states of the independent assembly, indicated by the numbers in circles. Externally, family

C F has two operating states (failed and good). The failed state is identically internal state

Q All other internal states states.represent good output

State Q represents the initial state of this independent assembly at launch. The transition

from state Q to state Q, for example (denoted by the symbol _'5)' indicates the failure

of component 14025 which is denoted by the symbol X14025. The transition from state Q

to state Q, denoted by the symbol X1, indicates failure of any one of the three majority

voting components 14022 (where two out of three must work successfully). Thus, the X1

transition rate is equal to 3k14022.

Similarly, the transition from state _ to state 6_, denoted by _4,
indicates failure

of component 14025 or one of the two remaining components 14022 (after one of the three has

failed). Thus, X4 = 2k14022 + k14025.
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)" I = .3k 14022 = 0.0729

)'2 =2)` 14023 = 0.00i2

X3=2X 14022 + )" 14023 + k 14025

X4=2X 14022 ÷ XI4025 = 0.0511

)`5: k 14025 = 0.0025

)'6 = )' 14023 + )' 14025 = 0.0031

:0.0512

'_2

AI

k2

A3

)'' IN % PER THOUSAND HOURS

PF " P(6)

PF = I-P(6)

Figure 3-6. Typical State Diagram Family (Capsule Separation Register

Independent Assembly CFB)

Transistion rates are, in general, identical to component failure rates, properly stressed.

3.5.2.6 Logic Expressions

As an adjunct to state diagrams, it is often necessary to develop logic expressions to simplify

a state diagram or to accommodate one-shot items (e. g., pyrotechnics) and cyclic devices

of low frequency (e. g., liquid thrusters).

In the telecommunications families, for example, abundant logic expressions are required

because of the complexity of the reliability relationships. In the propulsion families, logic

expressions are required because of the large number of one-shot and low frequency cyclic

devices.
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As an illustration of the use of logic expressions, consider again independent assembly

CFB, for which the state diagram is given in Figure 3-6. Figure 3-7 illustrates a break-

down of the math model into three separate state diagrams, one for the 14022 components,

one for the 14023 components, and one for the 14025 component. At the bottom of the

figure are logic expressions for their combination. In this example, a comparison between

Figure 3-6 and Figure 3-7 does not suggest that the logic expression method is simpler.

However, cohen the total number of components exceeds about 10, the logic expression method

is found, in general, to be preferred.

3.5.3 MAP MATRiX

A map matrix is used to relate the operating states of the families which comprise the

spacecraft to the mission outcome tree. The map provides the logic to describe what space-

craft hardware operating states are required to perform each spacecraft function in each

mission subphase. Thus, given the probabilities for the hardware states throughout the

mission, the probabilities of the various mission outcomes can be established.

A partial map matrix is shown in Figure 3-8. The rows of the matrix correspond to the

output states of the families which make up the spacecraft; the columns of the matrix refer

to the subphases of the mission outcome tree. The column subdivision in each subphase

indicates the manner in which that subphase is performed. For example, the "Orbit Insertion"

subphase could be performed such that the result is good (nominal orbit), degraded (non-

nominal orbit), or failed (planetary orbit not achieved). The symbols at the cross points

of the matrix, defined at the foot of the figure, relate the outcomes to the hardware states.

For example, consider function 4.1 (Orbit Insertion). In order to complete this function in

the good state, the independent assemblies of families 1 through 4 must be in the good state,

and 5 must be in either the good or degraded state, and 6 must be in the good or first degraded

state. This may be interpreted in terms of a logic statement as follows:

4.1G = 1GI] 2G fl 3G _4G(5G U 5D1) _ (6G U 6D1).
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FAMILY : CAPSULE. SEPARATION REGISTER

INDEPENDENT ASSEMBLY : CFB

State Diagram for Component 14022

3 A14022

©
2 ),14022

State Diagram for Component 14023

@ 2 A14023 .___Q A14023

State Diagram for Component 14025

@ h4025 .__@

Logic Expressions

=l-p F

Figure 3-7. Combination of State Diagrams by Logic Expressions
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Similarly, this canbe written as anarithmetic equation involving the probabilities of these

events to arrive at the probability of completing 4.1 satisfactorily:

P4.1G = (PIG) (P2G) (P3G) (P4G) (I-P5F) (I-P6D2 -P6F )"

The use of this type of matrix to represent the logical relationships between family output

states and mission functions may, at first, appear cumbersome. To the contrary, however,

this matrix was used so that the arithmetic equations describing the probabilities of com-

pleting these mission-oriented functions could be formulated within the computer. Thus,

changes in the matrix, being data inputs to the program system, can be readily accommodated

in the computer.

Note that the Subphase 4.2 (Orbit Operations) of Figure 3-8 requires families one and two

to be good, family six to be good or first degraded, and either family four or family five to

be good. Families four and five represent an example of functional redundancy between two

different independent assemblies during this subphase.

Figure 3-8 is a simplification of the actual map matrix used for the Voyager mission, which

is shown in Figure 3-9. Several additional map symbols have been added to accommodate

the logic among various independent assembly family output states, but the basic concept

and use of the map matrix is the same. Note that each major mission phase begins with

the specification of the independent assembly family states required to obtain and transmit

data for that mission phase. These specifications apply throughout all mission subphases

within that mission phase and describe the hardware performance necessary for the quality

states of the mission outcome tree, as discussed in Section 3.3.
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INDEPENDENT
ASSEMBLY

FAMILY

1

2

3

4

5

8

S
T
A
T

G

F

G

F

G

D

F

G

F

G

D

F

G

DI

D2

F

G

F

G

F

ORBIT ORBIT
INSERTION OPERATIONS

4.1 4.2

G D F G F

• • •

• Q •

Q

• • ®

® ® ®

® ®

® ® ®

® ® ®

O

ORBIT
TRIM NO. I

4.3

G F

®

®

®
®

ORBIT
OPERATIONS

4.4

G F

®

®

®

®

KEY:

A ALL FAMILY OUTPUT STATES ARE NECESSARY FOR THE
W GIVEN MISSION STATE.

ANY ONE OR MORE FAMILY OUTPUT STATES ARE NECESSARY
_ THE GIVEN MISSION STATE.

ANY FAMILY OUTPUT STATE IS A SUFFICIENT CONDITION FOR
• _ GIVEN MISSION STATE.

Figure 3-8. Partial Map Matrix
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3.6 OPTIMIZATION SYSTEM

This section describes the computer program system developed to evaluate and optimize

the configuration of the Voyager spacecraft.

3.6.1 PURPOSE OF THE PROGRAM SYSTEM

Preceding sections discuss in detail the first three steps in the orderly procedure of

designing the spacecraft to optimize the mission worth:

a,

Do

co

Definition of the mission profile and the spacecraft system, including potential

redundancy.

Definition of mission outcomes, and assignment of relative value or worth to
each outcome.

Analysis of the system failure modes, and relating system performance to
mission outcomes.

The final step in the optimization procedure is the use of a computer program system

which uses the results of the first three steps to determine that set of system configurations

which provide the maximum mission expected worth over the range of a cost constraint.

Cost in this context refers to the penalty associated with the use of each piece of system

hardware and can be measured in either pounds, dollars, watts, or cubic feet. Weight is

the primary cost constraint applied thus far, although power, volume, and dollar cost may

also be used.

Unlike the conventional approach to system design {maximizing system reliability without

considering the mission tradeoffs), the four Step approach leads to the maxiraizati0h of the

expected worth of the mission; that is, optimizing the probabilities of reaching valuable

mission outcomes. The computer program system utilizes a variation of dynamic

programming to select the configurations that yield the highest mission expected worth

from all configurations of comparable cost.
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The output of the program system is a listing of preferred system configurations ordered

by increasing system cost (e. g., weight) and mission expectedworth. With this output

listing, the system engineer is able to determine the optimally redundant system configura-

tion at any total system cost to which he is constrained.

The computerized optimization approach which follows can be adaptedto other complex

systems where the large number of alternate system configurations makes a manual

approach unmanageable. Detailed documentationof the total programming system is

contained in a separate document, "System Specification for Voyager Spacecraft

RedundancyOptimization Program. "

3.6.2 PROGRAMSYSTEMORGANIZATION

The redundancyoptimization program system consists of four interacting computer

programs which process information describing the mission and system to select the

optimum spacecraft system configurations for given constraints. Before proceeding, it

_will behelpful to review certain terms which have beenintroduced in preceding paragraphs and

are used repeatedly in the following pages.

A system is considered to consist of "families" of "independent assemblies." An inde-

pendentassembly family is a portion of the system (i. e., a functional grouping of hardware)

which can, in general, perform its assigned functions independently of the rest of the

system. The Voyager spacecraft consists of 51 such families of independentassemblies.

The functions of each family can be performed by one or more different groupings of

hardware (i. e., one or more independentassemblies). Thus we have a family of inde-

pendentassemblies.

Oneindependentassembly associated with each family is called the single-string inde-

pendent assembly. It is void of any intentional redundancy. The other independent

assemblies comprising the family contain some degree of redundancy above the single-

string member. The Voyager spacecraft consists of 51 different families of 166 such

independent assemblies, or an average of two alternate assemblies in addition to the
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single-string independentassembly for each family. Approximately 1021different system

configurations can be obtained using these 166 independent assemblies.

The Voyager mission is postulated to consist of seven phases: (1) prelauneh operations,

(2) launch and injection, (3) transit, (4) orbit achievement, (5) orbit descent and entry,

(6) orbiter operations, and (7) landed operations. These are further subdivided into sub-

phases, which are spacecraft operating modes as they occur in normal trajectory

sequence. Examples of subphases are cruise, midcourse corrections, and orbit trims.

There are 27 subphases in the Voyager mission.

An independent assembly can be further categorized according to the type of function it

performs. In-line functions are associated with trajectory functions and other objectives

which occur in the flight sequence of events. Quality functions are associated with collecting

and transmitting data during the mission.

The four computer programs in the optimization system are:

a.

bt

Co

d.

Probability Calculator Driver Program (SIPDRV_ - This program segregates each

independent assembly into its proper category and determines the type of proba-
bility information which must be calculated for each.

Probability Calculator Subroutine (SIP- State Interpretive Program) - As a subroutine

of the driver program, SIP calculates the probabilities of independent assemblies

being in given performance states during given subphases of the mission.

Mission Expected Worth Calculator (MEW Calculator) - As a subroutine of the

Optimization Program (OPT), MEW calculates the mission expected worth of

system configurations designated by the optimization routine.

Optimization Program (OPT) - OPT employs a variation of Bellman's process of

dynamic programming to identify the set of system configurations with dominant

mission expected worth over the range of the cost constraint under consideration.

The relationship between these programs, the functions of each, and the data inputs to each

are shown in Figure 3-10.

3-53



DATA

PROGRAM

Q

INDEPENDENT

ASSEMBLY

CATEGORY

INFORMATION

SIPDRV

DETERMINE

PROBABILITY

IN FORMATION

TO BE

CALCULATED

®
MAPPI NG OF

HARDWARE

FAILURE TO

INDEPENDENT

ASSEMBLY

PER FOR MANC E

STATES

l
SIP

CALCULATE

INDEPENDENT

ASSEMBLY

STATE

PROBABILITIES

© ®
MAPPING O F

INDE PE NDE NT

ASSEMBLY

PER FORMANCE

STATES TO

MISSION

OUTCOMES

ASSIGNMENT OF

WORTH TO

MISSION

OUTCOMES

MEW CALCULATOR

CALCULATE MISSION EXPECTED

WORTII OF DESIGNATED

SYSTEM CONFIGURATIONS

®

INDEPENDENT

ASSEMBLY

HARDWARE

DESCRIPT_NS

1
OP...._TT

SELECT

MAXIMUM

WORTH

CONFIGURATIONS

Figure 3-10. Optimization Program System Flow

The data input to each of the four programs is obtained from the following sources:

a. Independent Assembly Category Information - Identification of each independent

assembly as belonging to one of five categories:

1. In-line independent assemblies* with fixed probabilities.

2. In-line independent assemblies with two output states.

3. In-line independent assemblies with more than two output states.

4. Quality-only independent assemblies for which probabilities must be calculated.

5. Quality-only independent assemblies with fixed probabilities.

* That is, independent assemblies which contribute to the performance of in-line functions
on the mission outcome tree, as contrasted to those which contribute only to quality function.
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e.

d.

e.

Mapping of Hardware Failure Modes to Independent Assembly Performance States - The

failure modes of the components within each independent assembly are relate¢l to

the output states of the independent assembly. The data of interest to the

computer system consists of state transition diagrams, which represent the

possible states of equipment within the independent assemblies and the transition

rates between these states, and logic expressions of the combination of internal

independent assembly states which result in independent assembly output states.

Mapping of Independent Assembly Performance States to Mission Outcomes - The
map matrix, which describes which combinations of the independent assembly

output states result in performance of the various mission subphases.

Assignment of Worth to Mission Outcomes - The mission outcome tree structure

is based on the performance of the 27 in-line, first level functions (subphases) of

the mission profile. The terminal nodes on the tree define a set of exhaustive

and mutually exclusive mission outcomes. Assigned to each branch of the tree

is a worth, a subjective measure of the value associated with successfully

accomplishing each first level function. The worth of a particular outcome is the
sum of the worths of the branches traversed to reach that outcome.

Independent Assembly Hardware Description - The name, weight, volume, power

and dollar cost of each independent assembly.

3.6.3 SYSTEM FUNCTION

The system functions essentially as two separate program pairs, because the extensive

memory requirements, approximately 100K of core storage for each pair, can be met

with few computers. The first pair are the Probability Calculator Driver (SIPDRV) and the

Probability Calculator (SIP). The second pair are the Optimization Program (OPT) and

MEW subroutine (MEW). Communication between the two pairs, which are run in sequence,

is by a magnetic tape which cofitains the appropriate cumulative and conditional proba-

bility data generated by SIP and SIPDRV. The data is used by the MEW subroutine to

calculate the mission expected worth of candidate configurations being evaluated by OPT.

For the first step, SIPDRV identifies the category into which each independent assembly

falls and thereby the type of probability data required to describe the performance of each.

SIPDRV then transfers to SIP the directions for obtaining the initial independent assembly

output state probabilities. SIP then transforms the state transition diagrams into a set of

simultaneous linear differential equations. The initial probabilities are represented by
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initial conditions applied to the differential equations. SIP then solves the equations using

a classical fourth order Runge-Kutta algorithm and combines the solutions to obtain the

probabilities of an independent assembly being in each of its output performance states

during each mission subphase. Finally, the probabilities are stored on tape.

The OPT program selects a candidate system configuration and calls upon the MEW sub-

routine to compute the expected worth of the configuration. This is accomplished by

multiplying the worth of each possible mission outcome by its probability of occurrence as

determined by the probability of the independent assembly states and the mapping of the

independent assembly states to the mission outcome tree. OPT then compares the MEW

values of configurations of comparable cost and employs a dynamic programming type of

sorting technique to extract and save the configurations with the highest MEW for given

increments of cost. After all of the optimum configurations have been extracted, a listing

of the configurations is printed.

3.6.4 OPTIMIZATION PROGRAM

The optimization process is performed by the Optimization Routine (:OPT) which calls the

Mission Expected Worth Calculator (MEW) subroutine to compute the worth of certain system

configurations designated by the optimization routine. This subsection and the next describes

both the routine and subroutine in terms of the purpose of each, their relationship to other

programs in the program system, the conceptual approach employed by. each, and the

methods used by each.

3.6.4.1 Purpose

The Optimization Program provides a computerized technique capable of optimizing the

redundant hardware configuration for the Voyager spacecraft system. It considers,in effect, a

possible redundant configurations and selects those with highest mission expected worth as

a function of cost. The program generates a preferred list of independent assembly con-

figurations ordered by increasing cost constraint (weight, cost in dollars, volume, or power

consumption) and the associated mission expected worth (MEW) for each configuration. In

addition, a listing of configuration sensitivity coefficients is provided to show how
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incremental changes in configuration constraint result in incremental changes in MEW.

This configuration and sensitivity information can serve as a significant aid to the system

designer in selecting the most appropriate spacecraft redundancy configurations.

Since the selection of system redundancy among 51 families and a total of 166 independent

assemblies leads to nearly 1021 possible system configurations, the Optimization Routine

utilizes a variation of Bellman's dynamic programming to identify the preferred list of

configurations.

3.6.4.2 Conceptual Approach

The approach to the problem of determining optimum configurations of independent

assemblies for various cost allocations is based on a variation of dynamic programming.

Several useful parameters are defined to implement the optimization process:

a.

bo

co

5 MEW - The increase in mission expected worth (MEW) gained by using an

a__ assembly in place of the reference assembly* (the one with the lowest

cost), when the reference assembly is used in all other families.

AMEW - The increase in MEW gained by using an alternate assembly in a

particular family in place of the reference assembly, when all other families

contain the assembly used in the MEWma x configuration. The MEWma x configu-

ration is comprised of the alternate in each family having the largest 5 0 MEW.

5oMEW/_W - In this ratio 5 0 MEW is the parameter defined in (a) and SW is

the increase in cost resulting from the use of this alternate.

The sorting approach considers each family of independent assemblies one at a time, takes

each independent assembly within the family and forms all possible configurations with all

configurations saved in the previous stages of the sorting, then extracts a new set of

dominant configurations for use in the next state of the process. As shown in Figure 3-11,

dynamic programming extracts from all the system configurations under consideration

those which provide the highest MEW versus cost. The configurations saved are called

the dominant configurations, as contrasted with the inferior or dominated configurations

* The reference independent assembly is usually the single-string independent assembly
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_COST (WEIGHT, POWER, ETC.)

Figure 3-11. Goal of the Optimization Process

which provide lower MEW at comparable cost. The system designer can thus obtain a

listing of the optimal configurations available for each cost he wishes to consider.

To ensure that the computer running time of the optimization process stays within reason-

able bounds, several discarding criteria are available. The decision to use these involves

a tradeoff between program running time and resolution between adjacent dominant

configurations.

One of the criteria consists of zoning or gridding the cost scale into m segments. Only

the configuration which provides the highest MEW within that segment is retained in the

staging process. With this approach, itis not possible to guarantee that the ultimate

optimal configuration for each cost range will be obtained. However, by taking a large m,

the probability of selecting the optimal configuration improves at the expense of increased

computer running time.

3-58



A seconddiscard criterion consists of considering only those independentassemblies for

which the increase in MEW for a given increase in cost ( _MEW/_W} exceeds a prescribed

value _. As in the first option, an increase in _ to reduce running time increases the risk

of discarding optimal configurations.

A third option results in discarding a configuration if another exists with higher MEW at a

lower or identical cost. Called the "below-and-to-the-right" option, it results in ultimate

resolution between adjacent configurations on the MEW-cost plot.

3.6.4.3 General Operations

The sorting technique begins by forming the reference configuration of the system (i. e.,

the lowest cost configuration} which is said to contain the'_eference"independent assemblies.

In the Voyager system definition, the reference configuration is identically the single-

string system configuration. A single family is selected in which the reference independent

assembly is replaced with each alternate independent assembly, one at a time. If, for

example, four redundant alternate assemblies are contained in the first family, the. re-

sulting MEW-cost plot after the first pass

could appear as in Figure 3-12.

In Figure 3-12, configurations 2 and 4 are

eliminated if the 'below-and-to-the-right"

option is used, because they provide lower

MEW at higher cost than 1 and 3, respec-

tively. Thus, the reference configuration

and configurations 1 and 3 will be retained

as dominant configurations. If the gridding

option is used and, for example, all five

configurations fall in the first grid segment,

L)

[

fi]

REFERENCE CON FIG.

A COST (WEIGHT, POWER, ETC.)

then only the reference configuration and

configuration 3 are saved. Figure 3-12. Configurations Retained

After the First Stage

In the next stage of the sorting process, a second family is selected and its reference

independent assembly replaced with each of the redundant alternates, one at a time, in all
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configurations retained after the previous stage. A new set of system configurations is

derived using the dominant configurations from the last stage andthe reference configuration

as the building blocks. Discarding occurs again and a new set of dominant configurations

is saved for the next stage. This cycle repeats until all independentassemblies in all

families have beenconsidered.

3.6.4.4 Program Flow

A step-by-step description of the operation of the optimization program follows.

correspond to the blocks of the flow chart (Figure 3-13}: :

The steps

a. Read into computer memory the following data:

b.

Co

de

1. Identification and cost requirements for each independent assembly (single-

string and redundant alternate}.

2. Identification of type of cost being analyzed (denoted by W).

3. Resource constraint (Wconst).

4. Keep factor for AMEW/_.W (denoted by e).

5. Number of segments (m} between Wo and Wcons t (Wo
reference configuration).

is the cost of the

6. Option switch to select the lower-and-to-the-right criterion.

7. Option switch to inhibit the gridding.

Evaluate and print MEWs/s (single-string} and Ws/s (cost of single-string
configuration}.

Form the reference configuration from the independent assemblies of lowest cost

in each family. Evaluate MEW for this configuration, and call this MEW .
O

Calculate 5 MEW.. for each redundant alternate independent assembly, where i

is the index ° of an _Iternate within that family, and 5 MEW.. is the magnitude of

the difference between MEW and the value of MEW°when t_e jth independent
o

assembly is included in the configuration for the ith family and all other families

contain the independent assembly used in the reference configuration.

i. For each family of assemblies choose the independent assembly that gives

the largest 8 MEW... Form the configuration consisting of these selected

assemblies °nd calculate MEW for this configuration. Denote this value
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START

I
1 READ AND STORE ]
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STRING
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I
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ENCE CONFIGURA-
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AND COMPUTE

MEW O

4 COMPUTE:

5 0 MEWij -IMEWij-MEWo [

AMEW..
q

U

COMPUTE AND ORDER RATIOS:

6oMEWij/_Wij

A MEW../A W..
U U

I
5 SELECT FAMILY WITH lARGEST ]o MEWij/bWij

I

I IBELOW-AND-TO-RIGHT AND/OR

OPTIONS IF REQUESTED AND

DISCARD CON FIGURATIONS

7 SELECTREMAINTNG FAMILY I

WITH LARGEST I5 oMEWij/_Wt]

I
8 • SELECTEACH FANfILYALTERNA'VE[

COMPUTE MEW I

DISCARD CONFIGURATIONS l

._s -[
I_0_STCO_IO_Tio_sl

I
I EXIT

Figure 3-13. Optimization Program Flow Chart
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e.

f.

g.

h.

i.

Print MEW the cost, and the identification of this
by MEW ax" max'
configur_lon.

. Calculate &MEW.. for each alternate, where bME_j is the magnitude of
the difference be_veen the value of MEW for the configuration consisting of

the jth alternate for family i and the alternate selected in (1) for all other

families, and the same configuration except with the reference independent

assembly in family i. Calculate AWij, where AWij is the difference between
the cost of the jth independent assembly and the reference assembly in

family i.

. Form the ratios 5o MEWii/AWij and AMEWij [ _,Wi,j for each independent

assembly. Sort these ra_ios in order of decreasing magnitude of 5 o MEWij /
&W...

1j

. Discard from further consideration any independent assemblies with

AMEW.. / AW.. < e.
1j lj

Choose the family of independent assemblies that includes the alternate with the

largest 5 MEW.. /AW...
o 1j lj

Consider the configurations formed when calculating the 6^ MEW-,'s Save the
u zj _"

reference configuration. If the grid option is used, in each segment, save the

configuration with the largest 50 MEWed, discarding the others from further con-
sideration. If the below-and-to--the-ri'_ht option is used, discard from further

consideration any having a lower MEW value and a higher cost than another.

Choose the family of assemblies that includes the alternate with the largest

5 MEW.. /AW.. among those remaining in the list.
0 1] 1]

Form new configurations by adding each alternate for the selected family to the

reference configurations and to those configurations saved as the best so far.

Compare the MEW values for all new configurations and the previously saved

configurations, and discard configurations by the gridding criterion or the below-

and-to-the-right criterion, as applicable. -

Repeat steps g and h until all families of independent assemblies have been

considered.

j. Print the identification, MEW, and cost for all configurations saved.

3.6.5 MISSION EXPECTED WORTH CALCULATOR

In attempting to obtain optimum system configurations of independent assemblies as a

function of total system cost, some measure of worth must be assigned to each considered
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configuration. Conventional reliability techniques employ the total probability of success

as this measure, but for the many-faceted Voyager mission, a more comprehensive index

of mission expected worth (MEW) is selected as the measure of system effectiveness.

MEW, concisely, is the worth of each mission outcome multiplied by the probability of

the system achieving that outcome, this product summed over all possible mission outcomes.

3.6.5.1 Purpose

The MEW Calculator utilizes the state probabilities computed by SIP and stored on tape

(see Subsections 3.6.6 and 3.6.7). OPT reads the tat)e and stores the probabilities in

memory for use by the MEW Calculator.

The computation of MEW for a given system configuration is a complex problem in itself,

and so is handled by the MEW Calculator. This program evaluates the MEW equation

using the correct data for the specified configuration and returns the value to the main

Optimization Program. In the running of one problem, it is necessary to call the MEW

routine many times.

3.6.5.2 Conceptual Approach

Mission expected worth is a function of independent assembly state probabilities, mission

outcome values, and data quality values. (See Section 3.3 for a review of these terms.)

In order to evaluate MEW, it is necessary to define the map matrix describing independent

assembly performance relationships to quality and in-line functions, the mission outcome

tree, and value coefficients, as described in previous sections.

In addition, the Probability Calculator Routinecalculates state probabilities for each in-

dependent assembly during each mission subphase with each possible initial condition for

that assembly. These initial conditions are imposed on independent assemblies performing

in-line functions at the beginning of each subphase, but only at the beginning of the mission

for independent assemblies performing only quality functions. This probability data is

stored and identified by independent assembly family, alternate within the family, mission

subphase, output state, and initial condition.
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Oncethe required mission cumulative and subphase conditional probabilities are known,

the MEW Calculator computes the expected worth for system configurations as requested.

The general expression for MEW is given by:

MEW =

where Pb =

Wb=

p =
q

Qq

(_ PbWb _ PqQq),
b q

Probability that the system will be on mission

outcome tree branch b during subphase

Worth of branch b of subphase d

Probability that the system will be in quality

state q during subphase

Quality modifier for quality state q in subphase ¢L

3.6.5.3 General Approach

In more detail, mission expected worth is defined as follows (Figure 3-14):

MEW = _. A MEW. = _ (Y_ Pijk AVijk Qijk ) = 1:
i _ i k i _k Pijk

A Vij k Em(qijkm aim) 1

where

i =

MEW. =
1

j =

k __.

Pijk =

AVij k =
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Index of mission subphase.

MEW increment for the ith subphase.

Index of all outcome tree branches

in mission subphase i which origi-

nate from a particular node (the

jth node) at the start of the ith

subphase.

The node numbers for a particular

subphase running from top to bottom

on the mission outcome tree at the

end of subphase i.

Probability associated with getting

to node k via branch jk in sub-

phase i of the mission outcome tree.

Value associated with traversing to

node k via branch jk in subphase i

of the mission outcome tree.

SUBPHASE i

j=l _ k=l

k=2

k=3

j=2 k=4

_k=5

I I
I I
I I

Figure 3-14. Terminology of the MEW
Equation



Qijk

m

qijkm

= Data quality modifier for node k in subphase i.

= Index of the state of data quality in subphase i.

= Probability that the quality of data will be in state m during subphase i for the

tree branch beginning at node j, ana ending at node k.

a. = Quality coefficient associated with data quality being in state m_m
during subphase i.

The value and quality coefficients, _Vij k and aim, are read in for each subphase. The

probabilities, Pijk and qijkm are products of probabilities that independent assemblies

will be in required states at the end of a particular subphase; the multiplicands are generated

by the Probability Calculator. The map matrix of symbols is examined to determine those

independent assembly output states required to compute the probability of each mission

outcome in each subphase.

Upon completion of the MEW computation, the resulting value is returned to the main

optimization program.

3.6.5.4 Program Flow

The MEW Calculator flow chart is shown in Figure 3-15.

3.6.6 PROBABILITY CALCULATOR DRIVER PROGRAM

The probability calculator program consists of two programs, the Probability Calculator

Driver Program (SIPDRV) and the Probability Calculator Subroutine, also called the State

Interpretive Program (SIP). The driver segregates each independent assembly into its

proper category, and determines the nature of probability information which must be

calculated for each independent assembly. SIP is referenced only by the driver and is

called to calculate independent assembly state probabilities,
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Figure 3-15. Mission Expected Worth Calculator Flow Chart
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3.6.6.1 Purpose

The Driver Program (SIPDRV) is concerned with calculating and storing on tape the con-

ditional probabilities required for the MEW Subroutine. The Voyager spacecraft independent

assemblies are categorized into five different sets, and the method of determining the

probabilities is different for each set. For in-line independent assemblies (i. e., independent

assemblies associated with performing in-line functions as they occur in the flight sequence of

events), probabilities conditioned at the start of each subphase are required. For quality-

only independent assemblies (i. e., independent assemblies performing the functions of

collecting and transmitting data), only cumulative probabilities conditioned at the start of

the mission are required. Independent assemblies serving both functions are categorized

as in-line independent assemblies. SIPDRV determines the proper set for each independent

assembly and establishes the linkage with SIP for calculating the required probabilities.

3.6.6.2 Conceptual Approach

The first type of independent assembly (set 1) consists of in-line independent assemblies

with fixed probabilities. In this case, no calculation is necessary and SIPDRV merely reads

and stores on tape the fixed conditional probabilities.

Set 2 independent assemblies are those serving in-line functions that have only two states

(good and failed). For these assemblies, SIPDRV calls SIP to calculate the independent

assembly cumulative state probabilities at the end of each mission subphase, and then uses

these cumulative probabilities to specify initial conditions to SIP for the calculation of

conditional probabilities.
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Those in-line independentassemblies not in set 1 or 2 are grouped in set 3. Here also,

SIPDRVcalls SIP to calculate the independentassembly state probabilities at the end of

each mission subphase, given a goodcondition at time zero. In addition, SIPDRVspecifies

sets of initial conditions to SIP to calculate independentassembly conditional state pro-

babilities at the end of each mission subphase;i.e., given each of the goodanddegraded

conditions at the end of the previous subphase.

Quality-only independentassemblies without fixed probabilities are called set 4 independent

assemblies. For these independentassemblies, SIPDRVcall SIP to calculate only cumulative

probabilities at the end of each mission subphase. These probabilities are stored directly •

for use by MEW.

Quality-only independent assemblies with fixed probabilities are in set 5, which is handled

like set 1.

3.6.6.3 General Approach

For set 1 and 5 independent assemblies, SIPDRV reads from cards and stores on tape the

fixed probabilities specified for each subphase for use by MEW.

For set 4 independent assemblies, SIPDRV calls SIP once for each subphase. SIP reads

from cards the data required to calculate the independent assembly state probabilities for

a subphase, and SIPDRV stores these cumulative probabilities for use by MEW.

For set 2 independent assemblies, SIP is also called by SIPDRV once for each subphase

for cumulative probabilities. The conditional probabilities required by MEW are then cal-

culated by SIPDRV as follows:

AG N A AG O

AGN IAGN_I =
AGN_ 1/_ AG O

andAFNIAGN_I = 1.0-(AGNIAGN_I }

The notation AGN AGN_I
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assembly is in the good state at the end of the Nth subphase, given the initial condition

that it was in the good state at the end of the previous subphase. The numerator and

denominator of the expression defining AGNIA are the independent good state pro-GN_ 1

babilities calculated by SIP for the Nth and (N-1)th subphases, respectively.

The conditional probability AGN I AGN_I is calculated in the same manner as the multi-state

independent assemblies of set 3. However, SIP is called additional times by SIPDRV to

calculate the numerator of similar expressions defining the other required conditional

probabilities. In such cases, SIPDRV generates the specified initial conditions prior to

calling SIP by selecting certain internal state probabilities that have been saved from the

previous subphase and setting all other internal states to zero. Control cards in the deck

state the internal states to be used as initial conditions for each of the independent assembly

states.

As an example, consider the calculation of the degraded state conditional probability;

ADNJ ADN_ 1

J%l
ADN -11 AGo

The denominator of this expression is obtained by SIP as in the computation of conditional

probabilities for set 2 independent assemblies. The internal state probabilities associated

with degraded state (D), calculated during thiscall to SIP, are saved and used as initial

conditions for another call to SIP for the calculationof the numerator of the above expression.

The conditional probability is then calculated and stored for use by MEW. This procedure

is repeated for all required conditionalprobabilitiesat each mission subphase.

3.6.6.4 Program Flow

A control card placed at the beginning of each independent assembly data deck identifies the

set to which the independent assembly belongs. The SIPDRV flow chart (Figure 3-16)

tracks the program operation.
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Figure 3-16. Probability Calculator Driver Flow Chart
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3.6.7 PROBABILITY CALCULATOR SUBROUTINE

3.6.7.1 Purpose

The Probability Calculator Subroutine provides state probabilities for each independent

assembly under consideration for inclusion in the spacecraft system, as required for the

evaluation of mission expected worth. The program reads data describing the components

comprising each assembly, including failure characteristics and interrelations. Based on

this data, the program calculates the probabilities that the independent assemblies are in

each of the defined states at the end of each mission subphase (given the required conditions

at the beginning of each subphase). This information is stored on magnetic tape for use by the

MEW Subroutine.

The SIP Driver Program uses these independent assembly state probabilities to calculate

conditional probabilities required by the MEW Subroutine. and, in the case of multi-state,

in-line independent assemblies, it generates the initial conditions for SIP.

3.6.7.2 Conceptual Approach

The State Interpretive Program (SIP) uses:

a.

b,

A fourth order Runge-Kutta integration technique to solve differential equations

generated internally from the independent assembly state diagrams.

Arithmetic operations to calculate independent assembly output state probabilities

as a function of the internal state probabilities.

SIP employes the concept of state space to compute the internal independent assembly state

probabilities as a function of time. It enables the solution of state differential equations

without actually formulating them. This requires only describing the state diagram, the

initial conditions, and the desired data output.

The state space concept is based on classical Markow methods. The possible internal

conditions of the independent assembly are called states, and the totality is called state

space. The states are mutually exclusive and exhaustive so that at any instant in time
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the assembly can exist in one (and only one} state. After the state space has beendefined,

a math model is constructed to relate the states to each other. This model consists of a

state diagram (aset of arrows indicating the direction of the possible transitions from

state-to-state), the transition rates betweenthe various states, and a set of arithmetic

statements defining the relationship between internal states and independentassembly out-

put states. The computer program accepts this description, translates it into a set of

simultaneous linear differential and arithmetic equations, and solves the equations as a

function of time.

The integration in SIP is foundedon the Poisson postulate:

"Whatever the number of changesduring the time interval (0,t), the probability

that a changeoccurs during (t, t+h) is hh+o(h), and the probability that more

than one changeoccurs in o(h). "

In this postulate, h is the transition or failure rate, and o(h) is a designator for terms

-involving secondandhigher order terms in h. Componentshaving non-Poisson failure

characteristics canbe modeled as special cases or as psuedo-Poisson processes.

3.6.7.3 General Approach

SIP uses data either read from cards or generated by SIPDRV to calculate independent

assembly state probabilities at specific points in time, viz., the ends of each mission

subphase. A set of differential equations is established from the state diagram and

transition rates, and they are solved by a fourth order Runge-Kutta integration method.

Specified arithmetic operations are then performed on the internal state probabilities to

calculate independent assembly output state probabilities.

3.6.7.4 Program Flow

Figure 3-17 is a flow diagram of SIP.
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Figure 3-17. State Interpretative Program Flow Chart
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3.7 RESULTS

3.7.1 PROBABILITY CALCULATOR RESULTS

The results of the probability calculator are obtained in two forms (Figure 3-18). The

first form is the detailed printout which provides information used in each step of the cal-

culation of cumulative and conditional probabilities, as well as the results of the compu-

tations. The second form is the probabilities in array form on magnetic tape for use by

the optimization program.

3.7.1.1 Detailed Printout Results

The detailed printout results of the probability calculator are best illustrated by referring

to a typical listing (Figure 3-19) that shows a portion of the probability output for independent

assembly CHC (the liquid engine start-stop register).

The program first lists the name of the independent assembly under consideration. This

is followed by the definition of the first mission subphase: viz., the times at which the
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subphasebegins andends, the integration interval to be used in that subphase by the Runge-

Kutta algorithm, and a factor to indicate whether memory should be cleared. The next two

items specify the performance states of the independent assembly (good and failed) and their

correlation with the internal operating states of the assembly (good = internal state 13;

failed = internal state 14). The following item impresses initial conditions on the probability

calculator. (In the example, states numbered 1 and 7 are initialized to a probability of one,

and the remaining states retain an initial probability of zero. ).

The large data item following initial conditions describes the state diagram for the first

mission subphase. Each line describes an arrow from one internal state to another (1 to 2)

with the corresponding failure rate for that particular transition (0.2916). Following this,

the arithmetic operations required to compute the independent assembly output state proba-

bilities are listed. For example, the probability of state 16 is equal to the product of the

probabilities of states 2, 13, and 15. Finally, the desired output state probabilities are

printed. This completes the first subphase. (In subsequent subphases, printout of the

failure rates and arithmetic operations are only provided when they differ from the previous

subphas e. )

This independent assembly (Figure 3-19) has only two output states and thus does not require

additional specifications for the computation of conditional probabilities. Where these are

required, the steps are similarly detailed in the printout.

3.7.1.2 Tape Output Results

In addition to the detailed printout, the program also records on magnetic tape the necessary

probability information (in array form) plus indexing and pointing arrays to be used by the

optimization program in calculating MEW. A special printout program is written for listing

the information in the probability array in block form. These probabilities are either con-

ditional probabilities (for in-line independent assemblies) or cumulative probabilities (for

quality independent assemblies).
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Figure 3-20 shows a portion of this probability calculator output for two independent

assemblies (TBA, data storage assembly; and ECB, clocking and 2.4 kc power assembly).

The information appears in blocks of 30 values representing either the conditional or cumu-

lative probability for each subphase. (Since there are only 27 subphases to the mission

profile, the last three entries are always zero.) Cumulative probabilities are listed in

order of G, D1, D2, ..., F. TBA is an example of cumulative probabilities for a four-state

independent assembly. Conditional probabilities are listed in order of G/G, D1/G, D1/D1,

D2/G, D2/D1, etc. ECB is an example of a three-state conditional printout.

3.7.1.3 Summary of Probability Results

A summary of the probability calculator results is listed in Table 3-8 ( 7 sheets). The

cumulative probabilities of each independent assembly output state for thetast mission sub-

phase in which that independent assembly is required are summarized. The results from

the probability calculator are truncated to four places. As might be expected, the alternates

in each family having the lowest probabilitie§ of failure are generally dominant as the

selected alternates in maximum MEW configurations.

3.7.2 OPTIMIZATION RESULTS

The exercises to which the redundancy optimization tool was subjected during the study fell

into two categories. First, it was used for a series of test runs to develop insight into and

confidence in its operation. Second, it was exercised in its normal capacity to identify

optimum configurations and to evaluate their sensitivities with respect to hardware proba-

bilities, assignment of values, etc. Since it was a new tool, effort was concentrated

prhnarily in the first area. The results of exercises in both areas are summarized

in the following subsections.

3.7.2.1 Discarding by the Lower-and-to-the-Right (LATTR) Criterion

The optimization program discussed in Section 3.5 contains the option of discarding all

configurations which lie below and to the right (i. e., lower MEW and higher cost) of any

configurations saved to that point in the processing, regardless of the segment in which

the configurations lie. Comparative runs were made with and without this (LATTR} option.

In all runs, however, discarding within gridded segments was also employed, so that the

effectiveness of LATTR was measured in the presence of segmented discarding.
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Table 3-8. Probability Calculator Summary Results (Sheet1 of 7)
(Note: All Probabilities Are Cumulative}

Independent Last

Assembly Subphase _ _i _2 _3 _4 _5 _6 _7

CAA

CAB

CAC

CAD

CAE

CAF

CAG

CAH

27 0.9887

27 0.9889

27 0.9927

27 0.9929

27 0.9914

27 0.9916

27 0.9954

27 0.9956

-- 0.0113

-- 0.0111

-- 0.0073

-- 0.0071

-- 0.0086

-- 0.0084

-- 0.0046

-- 0.0044

CDA

CDB

CDC

4 1.0000

4 1.0000

4 1.0000

-- 0.0000

-- 0.0000

-- 0.0000

CEA

CEB

CEC

27 0.9912

27 0.9920

27 0.9987

-- 0.0088

-- 0.0080

-- 0.0013

CFA

CFB

20 0.9988

20 0.9999

-- 0.0012

-- 0.0001

CGA

CGB

14 0.9988

14 0.9999

CHA

CHB

CHC

CHD

CHE

CHF

CHG

CHH

18 0.9971

18 0.9988

18 0.9992

18 0.9999

18 0.9976

18 0.9988

18 0.9998

18 0.9999

£_

0.0029

0.0012

0.0008

0.0001

0.0024

0.0012

0.0002

0.0001
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Table 3-8. Probabil_y Calcuhtor Summary Results _heet 2of7)

Independent Last

Assembly Subphase _ _i _2 _3 _-4 _5 _6 _7

CJA 26 0.9931 .............. 0.0069

CJB 26 0.9984 .............. 0.0016

CKA 27 0.9875 .............. 0.0125

CKB 27 0.9883 .............. 0.0117

CLA 27 0.9916 .............. 0.0083

CMA 27 0.9645 .............. 0.0355

CMB 27 0.9977 .............. 0.0023

CNA 27 0.9987 0.0000 0.0000 0.0009 ........ 0.0004

CNB 27 0.9995 0.0000 0.0000 0.(D(_ ........ 0.0003

CPA 18 0.9103 .............. 0.0897

CPB 18 0.9920 -............. 0.0080

EAA 27 0.6937 0.2783 ............ 0.0279

EAB 27 0.7190 0.2579 ............ 0.0231

EAC 27 0.7359 0.2439 ............ 0.0202

EBA 22 0.9792 .............. 0.0208

EBB 22 0.9794 .............. 0.0206

EBC 22 0.9794 .............. 0.0205

EBb 22 0.9795 .............. 0.0205

EBE 22 0.9796 .............. 0.0204

EBF 22 0.9796 .............. 0.0204

ECA 27 0.9967 0.0000 ............ 0.0033

ECB 27 0.9967 0.0000 ............ 0.0021

ECC 27 0.9967 0.0012 ............ 0.0021

ECD 27 0.9967 0.0033 ............ 0.0000

ECE 27 0.9987 0.0000 ............ 0.0012

ECF 27 0.9987 0.0013 ............ 0.0000

ECG 27 0.9987 0.0013 ............ 0.0000

ECH 27 0.9987 0.0013 ............ 0.0000

ECJ 27 0.9976 0.0000 ............ 0.0024

ECK 27 0.9976 0.0003 ............ 0.0021

ECL 27 0.9975 0.0003 ............ 0.0022

ECM 27 0.9975 0.0003 ............ 0.0021

ECN 27 0.9996 0.0000 ............ 0.0003

ECP 27 0.9996 0.0003 ............ 0.0000

ECQ 27 0.9996 0.0003 ............ 0.0001

ECR 27 0.9996 0.0003 ............ 0.0000
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Table 3-8. Probability Ca_ulatorSummaryResu_s _heet 3 of

Independent Last

Assembly Subphase G ])i D _3 _4 _5 ])6
-- --2

])7 £_£_

EDA 27 0.9926 0.0013 0.0053 ........

EDB 27 0.9927 0.0013 0.0056 ........

EDC 27 0.9972 0.0013 0.0009 ........

EDD 27 0.9980 0.0013 0.0005 ........

EDE 27 0.9978 0.0013 0.0001 ........

EDF 27 0.9980 0.0013 0.0004 ...... --

EDG 27 0.9981 0.0013 0.0000 ........

EDH 27 0.9985 0.0013 0.0000 ........

EDJ 27 0.9939 0.0000 0.0053 ........

EDK 27 0.9940 0.0000 0.0056 ........

EDL 27 0.9985 0.0000 0.0009 ........

EDM 27 0.9989 0.0000 0.0009 ........

EDN 27 0.9961 0.0000 0.0001 ........

EDP 27 0.9994 0.0000 0.0003 ........

EDQ 27 0.9994 0.0000 0.0000 ........

EDR 27 0.9998 0.0000 0.0000 ........

-- 0.0008

-- 0.0003

-- 0.0006

-- 0.0002

-- 0.0008

-- 0.0003

-- 0.0006

-- 0.0002

-- 0.0008

-- 0.0003

-- 0.0006

-- 0.0002

-- 0.0003

-- 0.0003
-- 0.0006

-- 0.0001

EEA 27 0.9960

EEB 27 0.9999

--Q

--I Q--

EFA 27 0.9845

EFB 27 0.9997

--Q

.Q

-- 0.0155

-- 0.0003

EGA 27 0.9953

EGB 27 0.9961

EHA 27 0.9697

EHB 27 0.9828

-- 0.0303

-- 0.0172

GAA 27 0.8992

GAB 27 0.9605

GAC 27 0.9662

GAD 27 0.9646

GAE 27 0.9682

GAF 27 0.9098

GAG 27 0.9075

--I

.I

.4

0.1008

0.0395

0.0338

0.0354

0.0318

0.0902

0.0924

GBA 27 0.9793

GBB 27 0.9995

GBC 27 0.9956

GBD 27 0.9987

0.0016

0.0001

0.0028

0.0003 -m

--Q

-- 0.0191

-- 0.0004

-- 0.0016

-- 0.0010
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Table 3-8. Probability Calculator SummaryResults (Sheet4 of 7)

Independent

Assembly

Last

Subphase
_i _2 _3 _4 _5 _6

GDA

GDB

GDC

GDE

GDF

GDG

27 0.9593

27 0.9982

27 0.9967

27 0.9968

27 0.9885

27 0.9982

D 7 F

-- 0.0407

-- 0.0018

-- 0.0033

-- 0.0032

-- 0.0115

-- 0.0018

GEA

GEB

27 0.9946

27 0.9999

GFA

GFB

GFC

GGA

GGB

GGC

27 1.0000

27 1.0000

27 1.0000

27 0.9955

27 0.9980

27 0.9995

-- 0.0000

-- 0.0000

-- 0.0000

-- 0.0045

-- 0.0020

-- 0.0005

GHA

GHB

27 0.9995

27 1.0000

MAA

MAB

27 1.0000

27 1.0000

-- 0.0000

-- 0.0000

MBA 27 1.0000 -- .......... 0.0000

MCA

MCB

20 0.9692

20 0.9990

MDA

MDB

MDC

MDD

MDE

MDF

MDH

MDJ

3 0.9989

3 0.9990

3 0.9990

3 0.9999

3 1.0000

3 1.0000

3 1.0000

3 0.9991

-- 0.0011

-- 0.0010

-- 0.0010

-- 0.0001

-- 0.0000

-- 0.0000

-- 0.0000

-- 0.0009

MEA 27 1.0000 -- .......... 0.0000
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Table 3-8. Probability Calculator Summary Results (Sheet 5 of 7)

Independent

Assembly

Last

Subphas e G D 1 I) 2 D 3 D
-- --4

_5 _6 _7

MGA 27 1.0000 -- .......... 0.0000

MHA

MHB

27 1.0000 ....

27 1.0000 .....

_m _u

_m

Nm

mm

B_

m_

MLA 27 0.9190 -- .......... 0.0810

MMA 27 1.0000 -- .......... 0.0000

MNA 27 1.0000 -- .......... 0.0000

MPA 12 1.0000 -- .......... 0.0000

MQA 27 1.0000 -- .......... 0.0000

MRA

MRB

3 1.0000

3 1.0000

m_

_B

m_

m_ m_

m_

ml mm

IAA 3 0.8565 0.0433 -- .......... 0.1002

LBA 3 0.9702 -- .......... 0.0298

PAA

PAB

PAC

18 0.9999

18 1.0000

18 1.0000 wm

mm _m

mm

mm

_m

m_ _m

m_

mm

_w

m_

-- 0.0001

-- 0.0000

-- 0.0000

PBA

PBB

18 1.0000

18 1.0000

m_ _m

_m

m_ m_

_m _m

mm

_m

PCA

PCB

PCC

18 0.9999

18 1.0000

18 1.0000

m_

_m

m_

_n

_w

mm

_m

N_ m_

mm -- 0.0001

-- 0.0000

-- 0.0000
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Table 3-8. Probability Calculator SummaryResults (Sheet 6 of 7)

Independent Last

Assembly Subphase G D D 2 D 3 D 4 D D 6 D-- --i --5 --7
F

PDA 18 0.9999 .............. 0.0001

PDB 18 0.9999 0.0000 ............ 0.0001

PDC 18 0.9999 0.0000 ............ 0.0001

PDD 18 0.9999 0.0000 ............ 0.0001

PMA 14 0.9986 0.0005 -- .......... 0.0001

PNA 14 0.9998

PNB 14 0.9998

_m

_m w_

m_

m_

_m mu

_m

PPA 14 0.9995

PPB 14 0.9995 m_

w_

_m

_m

mm

m_

m_

mm

_m

-- 0.0005

-- 0.0005

PQA 14 0.9978 -- .......... 0.0022

SAA 27 1.0000 -- .......... 0.0000

SBA 27 1.0000 -- .......... 0.0000

SCA 27 0.8000 -- .......... 0.2000

SDA 27 0.2740 0.4730 0.1190 .......... 0.1340

SEA 27 0. 9500 -- .......... 0.0500

SGA 22 0.9600 -- .......... 0.0400

SHA 27 1.0000 -- .......... 0.0000

TAA 27 0.9956 0.0195 0.0010

TAB 27 0.9910 0.0007 0.0000

TAC 27 0.9997 0.0001 0.0000

u_

_m

ml

ml

_m

DB

_m

-- 0.0039

-- 0.0002

-- 0.0002

TBA 27 0.1454 0.6019 0.1152

TBB 27 0.1460 0.7607 0.0752

_m

mm

mu

u_

mm

_m

mm

um

3-85



Table 3-8. Probability Calculator Summary Results (Sheet 7 of 7)

Independent Last

Assembly Subphase G_ _D1 _D2 _D3 D 4 D 5 D 6 _D7 _F

TCA 27 0. 5273 0. 1781 0. 0000 0. 0671 0. 0000 0. 0000 0.0000 0. 0000 0. 2276

TCB 27 0. 8849 0. 0004 0. 0729 0. 0009 0. 0000 0. 0014 0. 0000 0. 0001 0. 0392

TCC 27 0.8735 0.0004 0.0734 0.0009 0.0000 0.0001 0.0000 0.0000 0.0516

TCD 27 0. 8301 0. 0077 0. 0692 0. 0091 0. 0000 0. 0037 0. 0000 0. 0004 0. 0800

TCE 27 0. 8836 0. 0004 0. 0742 0. 0009 0. 0000 0. 0014 0. 0000 0. 0001 0. 0392

TCF 27 0.8748 0.0004 0.0721 0.0009 0.0000 0.0001 0.0000 0.0000 0.0516
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In the runs made, the final configuration listings using LATTR correspond closely to

those made without LATTR after elimination of the so-called interior configurations; i.e.,

configurations in the final listing with lower values of MEW and higher cost (weight) than

other configurations. In other words, the final configuration listing obtained without LATTR

essentially could be reduced to that obtained using LATTR by applying the LATTR criterion

to the final listing and eliminating the interior configurations. Further, use of LATTR

reduced computer processing time by up to 40 percent. It was generally concluded that use

of the LATTR option with the gridding option was desirable.

3.7.2.2 Segment Size

Increasing the number of segments (reducing the segment size) into which the cost axis is

divided increases the number of final configurations saved when the gridding option of dis-

carding is employed, since only one configuration is saved for each segment. Runs were

made increasing the number of segments from 5 to 30 to 150 segments. In general, the

best configuration in each segment was identically the best configuration (that with the highest

MEW} for the same range of cost when the original segment was subdivided into smaller

segments. By expanding each segment into subsegments, configurations of lower cost and

slightly lower MEW than the original configuration were identified. Thus, using more seg-

ments provides the designer with a set of nearly equivalent configurations from which to

choose. At the same time, however, computer processing time triples (increasing from 5

to 150 segments).

At the other extreme, however, too few segments yield interior configurations in the final

configuration listing. Figure 3-21 shows the results of three optimization runs which were

identical except for using 5, 30 and 150 segments. (The keep factor and abbreviated MEW

conditions are explained in following sections and are not germaine to this comparison. )

Dips in the 5-segment and 30-segment curves below the 150-segment curve indicate interior

configurations; these seem to be more prevalent in the early part of the plot where the MEW-

cost slope is steeper. Thus, there seems to be some evidence to suggest that many segments

should be used.
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Figure 3-21. Optimization Results Using 5, 30 and 150 Segments

A maximum cost (weight) constraint may be placed on the system configuration, which

effectively reduces the span of the cost scale over which configurations are selected. For

a given number of segments, specifying a cost constraint has the effect of reducing the

segment size. Employing such a constraint was generally found to be desirable, since it

had the same effect as increasing the number of segments and eliminated the development

of configurations outside the range of cost interest.

3.7.2.3 Full Versus Abbreviated MEW Calculation

The subroutine which evaluates MEW for any desired configuration was programmed so that

a portion, rather than all, of the mission outcomes defined by the mission outcome tree could

be considered. One such abbreviation of interest consists of considering only the upper

branch of the outcome tree (i. e., the nominal mission profile) and eliminating all lower

branches describing various degraded missions. Such an abbreviation was found to reduce

the time required to calculate MEW by more than an order of magnitude. Since MEW is

called many times in the optimization process, this reduction has a significant effect ou the

total running time for optimization.
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The value of MEW computed using this abbreviated formulation is obviously less than the

full MEW, which considers the degraded mission outcomes with their associated values.

Experience (supported by intuition) showed that this difference between the full and abbre-

viated MEW became smaller as more reliable configurations were considered. For the best

configurations, this difference was around 1.5 percent; and even for less reliable configura-

tions, it was within 5 or 6 percent. Optimization runs using both the full and abbreviated

MEW programs generally yielded identical configurations at higher costs, although some

differences did occur among the configurations saved in the lower cost segments. Further,

the ordered listing of independent assemblies ranked by 6oMEW/AW (see Section 3.5} was

somewhat changed when using the different MEW programs.

Nevertheless, it appears that the short MEW calculation may validly be used for investigation

of configurations at higher weights, which is, after all, the general region of interest. The

full MEW calculation appears necessary when investigating configurations in the region of

the single-string configuration.

3.7.2.4 Use of the Keep Factor (c)

The optimization program provides the option to eliminate candidate independent assemblies

from consideratien if their addition produces too small an increase in MEW for the added

cost. The value of AMEW/AW below which independent assemblies are not to be considered

is known as the keep factor, e.

Figure 3-22 illustrates the results of several runs with varying e values. The initial effect

of increasing the value of e was to truncate the MEW-cost plot of dominant configurations

at an upper value of cost. Further increases in e not only increased the truncation of the

plot, but also caused dropouts in the curve and a reduction in the value of the ordinate below

the optimum curve. Increasing e also reduced the computer processing time, since fewer

independent assemblies were considered.
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The results of Figure 3-22 may be explained based upon the following reasoning. The keep

factor basically eliminates independent assemblies below a given MEW-cost slope, with

MEW calculated with respect to the MEWma x configuration. Since the slope of the MEW-cost

curve is generally decreasing, one would expect increasing c to shorten the curve from the

right, with occasional intermediate dropouts as the decreasing slope departs from monotonicity.

3.7.2.5 Sensitivity to Launch Vehicle Reliability

A series of optimization runs were made to determine the sensitivity of the selection of

spacecraft system configurations to the probability of success of the launch vehicle. Nominally,

a value of 0.85 was used as the probability of successful performance of the launch vehicle

from liftoff through interplanetary trajectory injection (see LAA of Table 3-8). Additionally,

values of 1.00 and 0.55 were investigated as extremes. Figure 3-23 shows these results.

As was expected, the value of MEW was found to be directly proportional to the launch vehicle

reliability. The selected configurations, however, were not found to be sensitive to the

launch vehicle. The same configurations were selected in each of these runs, even though

their MEW values were substantially different.
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3.7.2.6 Sensitivity to Science Equipment Reliability

A similar set of sensitivity runs was made varying the probability of successful operation

of the scientific equipment aboard the spacecraft. The extreme values in this case ranged

from perfect equipment to equipment with twice the nominal failure rate. The results were

similar to those for the launch vehicle sensitivity runs, except that MEW was found to be

far less sensitive to changes in scientific payload reliability. This may be explained by

realizing that one-half of the value of the 1973 mission is engineering in nature. Of the

remaining scientific half of the mission, the major value portion is obtained from the capsule,

rather than from spacecraft science. Thus, changes in the reliability of the spacecraft

scientific equipment can only affect a fraction of total mission expected worth.

3.7.2.7 Sensitivity to Mission Value Assignments

Another series of exercises was performed to determine the sensitivity of the configuration

selection to the apportionment of value among the branches of the mission outcome tree.

Four different value distributions were considered in addition to the nominal value assign-

ments identified in Figure 3-2. These five sets of values are listed in Table 3-9 and may

be summarized as follows:

a. Nominal value apportionment.

b. All of the value on the spacecraft. That value nominally assigned to the capsule

is assigned to the spacecraft in the orbiter operations phase of the mission.

c. All of the value on the capsule.

d. All of the value to the spacecraft in subphase 27, the last mission subphase. In

this case, the spacecraft must complete its total mission successfully, including

six months of orbital operations, to receive any value.

e. All value to the spacecraft in subphase 25. This corresponds to the preceding

situation, except that only one month of orbital operations is required.

Figure 3-24 shows the results of these runs. Note that MEW is generally sensitive to

changes in value assignment. In particular, the 6-month requirement of successful orbital

operation for any value return drastically reduced MEW from its nominal range.
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The configuration selection, however, was found to be less sensitive to value changes,

particularly when values were not shifted between the capsule and spacecraft systems. For

example, the configurations selected for various system weights are either quite similar

or identical for the value curves of cases 1, 2, 4, and 5 (Figure 3-24). When all of the

value was placed on the capsule system in case 3, changes occurred in those independent

assemblies not required to deliver the capsule. In particular, those independent assemblies

associated with obtaining orbital science reverted to the single-string alternate implementation.

Thus, spacecraft configuration selection was found to be somewhat insensitive to the distri-

bution of mission value within the spacecraft system, but not among systems.

3.7.2.8 Configuration Recommendations

The optimization program exercise that provided most of the insight into the amount and type

of redundancy that should be employed within the spacecraft system was the so-called reference

run, with the following conditions:

a. 150 segments.

b. Lower-and-to-the-right criterion employed.

c. Keep factor = e = 0.

d. Abbreviated MEW program.

The results of the reference run are presented in two forms. Figure 3-25 is a plot of MEW

versus total system weight. Figure 3-26 is an independent assembly tabulation of each of the

system configurations on the curve of Figure 3-25. The top line of Figure 3-26 gives the

configuration having the highest MEW value, called the maximum MEW configuration. The

alternates for this configuration are listed from left to right across the page according to

their ranking in the 50 MEW/AW listing computed at the beginning of the optimization process.

For all configurations listed below the maximum MEW configuration (i. e., all configurations

of less weight), only those alternates which differ from the maximum MEW configuration

are shown. In other words, a blank under a family column implies that the alternate from

that family for that configuration is the same independent assembly as is used in the maximum

MEW configuration. To simplify the chart further, those families which have no redundant

alternate plus those where the single-string alternate appeared in all final configurations

are not shown.
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It is interesting to note that nearly all of the increase in MEW occurs within the first 15 incre-

ments in weight. Furthermore, study of the configuration patterns of Figure 3-26 shows

that this occurs in two stages. The configurations of the first seven increments are made

up by gradually adding weight in one or more of families, as shown in the chart. In the

eighth increment, the TCA (Radio and Command)alternate is replaced by the TCE alternate,

while all other families revert to their single-string alternates. The increase in MEW at

this point is almost 50 percent of the maximum attainable increase over single-string with

the set of available redundant alternates. The following seven configurations essentially

duplicate the pattern of the first seven segments. Beyond this point, the value of MEW

levels off to a maximum value of 133.8 out of a maximum of 200 (66.9 percent).

The behavior of the MEW weight curve of Figures 3-25 and 3-26 suggests the following

interpretation: a relatively few spacecraft system families have a dominant role in effecting

the value of MEW. These families are characterized by the following two conditions:
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a.

b.

The reliability of the single-string independent assembly is sufficiently low and

the mission role of that family is sufficiently critical as to account for a substantial

loss of mission expected worth by using the single-string assembly.

A redundant alternate independent assembly with significantly improved reliability
is defined.

One obviously fruitful future course of action suggests itself immediately from the above

results--to examine additional redundant alternate independent assemblies for these key

families.

A means of studying the relative effect of a particular independent assembly on mission

expected worth wa_ suggested late in the study. It consists of computing MEW for the system

with all families except the one independent assembly under consideration assumed to have

perfect reliability. Then, the independent assemblies would be ranked according to their

MEW values in perfect system configurations. The families with the lowest values of MEW

would indeed be fertile areas for additional redundancy and a significant resulting improve-

ment in overall mission expected worth.

3.7.2.9 System Reliability

Some insight into the correlation between MEW and the more familiar reliability figure of

merit may be gained from Figure 3-27. The upper curve represents the MEW-cost plot

for nominal value apportioned throughout the various mission subphases. In this case,

partial value is awarded for partial success. The lower curve represents the assignment

of all value to completion of the total mission, assumed to be completion of one month of

orbital operation for the 1973 mission; i. e., case 5 of Figure 3-24. Thus, for example, a

spacecraft configuration that weighs about 17, 350 pounds would have a probability of 56 per-

cent of success_ally completing its entire mission (including the effect of the launch vehicle).

It also would have a mission expected worth of about 134 of 200 worth points distributed

throughout the mission (about 67 percent).
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3.7.2.10 Expected Worth of the Nominal 1973 Voyager Mission

All of the results presented to this point have been for a mission configuration consisting of

one launch vehicle, one spacecraft, and one capsule; i. e., one launch vehicle and one plane-

tary vehicle (spacecraft and capsule).

The nominal Voyager mission configuration consists of one launch vehicle and two planetary

vehicles. The resulting MEW-cost curve for the nominal two-on-one mission configuration

(assuming that no additional worth is accrued by repeating mission objectives) is contrasted

3-102



with the one-on-oneconfiguration in Figure 3-28 for two cases of launch vehicle reliability:

nominal (Ps = 0.85) and perfect (Ps = 1.0).

Figure 3-28 reveals that, for the nominal Voyager mission configuration, the expected worth

of the mission is about 81 percent of the max/mum attainable worth.
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3.8 CONCLUSIONS

3.8.1 ASSUMPTIONS, APPROXIMATIONS AND ANALYSES OF ERRORS

3.8.1.1 Configuration Optimization Method

Because it is impractical to consider all of the possible 1021 system configurations in

the configuration optimization process, only certain of the system configurations are

evaluated and carried forth in the configuration building process in accordance with the

configuration comparison and discarding criterion. Ideally, any partial configurations

discarded cannot be those which might ultimately be preferred.

In parallel with the development of this tool, a study was initiated to determine if, under

all known conditions, the present optimization method -- or more precisely, the present

method of ordering configurations in the buildup to preferred configurations could

result in the discarding of any preferred configurations. This study revealed that, under

certain combinations of circumstances, the preferred configurations might indeed be

dropped. However, by comparing optimization results using two different methods of

ordering configuration for the computation of MEW, confidence was established that these

situations do not generally arise.

In parallel with the foregoing study, Stanford Research Institute also was independently

engaged to analyze this problem. This investigation revealed that, although the present

optimization procedure cannot be proven to yield the true optimum (because certain vari-

ables cannot be separated in the mission expected worth equation}, neither can it be proven

not to yield the true optimum over reasonable ranges of input data. SRI also concluded that

difficulties would be encountered with all optimization procedures presently available, and

that the dynamic programming technique of Section 3'. 5 is probably the best approach.

SRI observed that the optimization procedure will rarely yield the wrong answer, and if

it does, the error will be small.
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The two independentstudies discussed aboveagreed that (1) the present optimization method

is imperfect, but that (2} the likelihood of not selecting preferred configurations of sig-

nificance is extremely small.

3.8.1.2 Method for Computing Mission Expected Worth

The calculation of mission expected worth is by accrual; i. e., proceeding from left-to-right

in the mission outcome tree, a running sum of expected worth is accumulated. In each

subphase, the branch probabilities are multiplied by their respective values, and these

products are added to the subtotal that has been accumulated through the previous mission

subphase. This procedure is repeated until all subphases have been calculated.

The subphase branch probabilities are computed in accordance with the mission outcome

tree, the map matrix, and the output state probabilities for the independent assemblies.

However, a rigorous calculation of MEW also entails consideration of all possible com-

binations of the subphase-by-subphase histories of independent assembly states. The pro-

hibitive manual analysis and computational time requirements for such an exact solution

were obviated by using the approximation of independent assembly conditional probabilities

discussed in Subsection 3.6.6.

A task was undertaken to determine the extent of error (if any) introduced in the optimiza-

tion process as a result of the conditional probability approximation. This effort was

successful to the extent that it identified the specific nature of the approximation. However,

efforts to bound the approximation error in any absolute sense were not successful. On the

other hand, comparisons among selected optimization runs gave confidence that any errors

resulting from the conditional approximation are apparently small.

In order to remove the need for approximation in the calculation of MEW, two other tasks

were initiated in parallel with the above error analysis. The first task sought to determine

if MEW could be computed exactly and more simply without using conditional probabilities.

The study team was given considerable freedom to make reasonable assumptions.
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Initially, this effort appeared promising if certain assumptions could be made. A closer

examination of this approach revealed, however, that its computational difficulties may be

as great as those involved in the present approximation method. Therefore, this method

does not currently promise a simpler method of calculating MEW.

The second task tried to determine if MEW could be computed exactly using an interpretive

computer program (to be developed} to read in the mission outcome tree and map matrix,

develop logic expressions for the computation of MEW, and reduce them to arithmetic ex-

pressions suitable for computation on a general purpose computer. The feasibility of such

an interpretive program was demonstrated. It still remains to be determined whether the

time required to compute MEW by this technique is within reason.

3.8.1.3 Probability Calculator Methodology

The computation of the output state probabilities for the independent assemblies generally

requires the solution of a set of simultaneous differential equations. The SIP method of

solving these differential equations involves nominally 100 numerical integrations per mission

subphase using a fourth order Runge-Kutta integration technique.

A study of results from identical probability calculator runs on the Honeywell 1800 (48-bit}

system and the General Electric 635 (36-bit) system revealed that the Honeywell 1800

yielded probabilities accurate to six places to the right of the decimal point, while the

General Electric 635 yielded probabilities accurate to only four places. In these identical

runs, it was noted that the precision obtained was only about one-half that obtainable on the

computing system.

A limited study revealed that the Runge-Kutta technique itself may result in significant

propagation of truncation errors, which are compounded by the large number of integrations

per mission subphase. A small-scale test was then conducted to determine the effect of

using fewer integrations per subphase. This test revealed that the computational accuracy

of the probability calculator improved somewhat with reduced integrations, and the com-

puter running time was significantly reduced.
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A check of other computations made by the program system did not uncover any other areas

where truncation leads to errors. In summary, the Runge-Kutta technique for solving the

state diagram differential equations must be regarded as less than ideal because of the

propagation of truncation errors.

3.8.2 RECOMMENDATIONS FOR FURTHER STUDIES

3.8.2.1 Configuration Optimization Methodology

It is observed in Subsection 3.8.1 that the configuration dynamic discarding process

could, in some instances, result in the discarding of preferred configurations. One fruitful

area for further study would be to investigate several different methods of ordering inde-

pendent assemblies in the buildup process to determine the effect, if any, of ordering on

the selection of preferred configurations.

If it is determined that the selection of preferred configurations is insensitive to the order-

ing method, then confidence in the accuracy of the present ordering method will be increased

even more. If, on the other hand, it is determined that the selection of the preferred con-

figuration is sensitive to the ordering method, then the study should be continued to de-

termine the optimal ordering method. Indeed, it may be shown that two or even more

different ordering methods should be used in the same optimization study to ensure that

preferred configurations are not discarded.

3.8.2.2 Methodology for Calculating Mission Expected Worth

The approximations involved in calculating MEW are reviewed in Subsection 3.8.1. Two

studies were discussed regarding the elimination of these approximations: (1) to determine

if MEW could be computed exactly and more simply, and (2) to determine whether an in-

terpretive computer program could be developed to permit an exact calculation of MEW.

Further study is desirable in both of these areas. In particular, in the second study area,

it is recommended that the interpretive computer program approach be studied in more

detail to see whether the computer time requirements are practical.

3-107



3.8.2.3 Reduction of System Computing Time

The present optimization program system requires considerable computer time.

can be divided into two categories:

a. One-shot runs. Required for the calculation of independent assembly state

probabilities on an assembly-by-assembly basis.

b. Production runs. One for each MEW-cost curve desired.

This time

The total one-shot computer time for the probability calculator is approximately 60 hours

(on the GE 635}, which includes 20 hours of basic calculation and 40 hours of rerun. The

time for a production run varies from about one-half hour to three hours, depending upon

the parameters selected; e. g., the number of grid segments, abbreviated vs full MEW

calculation, etc.

To reduce the time required for one-shot runs, it is recommended that the number of

probability calculator integrations per subphase be analyzed toward the goal of a significant

reduction. This study must, of course, consider the inaccuracy introduced by fewer

integrations. A test run has already revealed that one-shot computer time can be reduced

by as much as a factor of five by reducing the number of integration intervals.

It is also recommended that techniques be explored to reduce the production run time, with

particular reference to reducing the upper range of running time (i. e., three hours} when all

parameters are set for maximum resolution.

3.8.2.4 Further Use of the Tool

The preceding three subsections are concerned with the methodology of the redundancy

optimization tool itself. This subsection is devoted to a more realistic question--viz.,

what can the tool do for Voyager ?

There is no question that the results of Section 3. 7, with particular reference to the con-

figurations of Subsection 3.7.2.8, lend considerable insight into the amount and type of

redundancy which should be applied within the spacecraft system.
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The quality of the output of the system redundancy tool is proportional to the quality of the

input; i.e., the definition of the single-string spacecraft system and potential redundancy.

For this study, this input definition was performed within the framework of the General

Electric Phase IA, Task B design. Since the Task B design is nearly two years old at the

time of this writing, it would seem appropriate to re-examine the input definition in light

of the system design evolution through Tasks C and D.

Specifically, it is strongly recommended that the mission and system definition input to the

tool be remodeled and the optimization system be re-exercised to reflect evolutionary

changes in the mission profile and system design since Task B, with special reference to the

system design update of Phase IA, Task D.

Secondly, recent work by the GE Long-Life Space Systems Program has revealed that failure

mechanisms may be grouped into two categories:

a. Non-systematic Failures. Those that occur in only one component of a type.

b. Systematic Failures. Those that occur in all components of one type.

Block redundancy is obviously effective against non-systematic, but not systematic failures.

Functional redundancy is a safeguard against systematic failures.

The hardware reliability models discussed in Section, 3.4 and 3.5 basically recognize only non-

systematic (or random) failures. The Long-Life Program has shown, however, that

systematic failures are equally if not more prevalent in complex spacecraft systems than

non-systematic failures. This has strong implications of the ratio of functional to block

redundancy which should be designed into the spacecraft.

Accordingly, it is strongly suggested that any redefinition effort include modifying the

hardware reliability models to reflect systematic as well as random failures.
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3.8.3 CONCLUSIONS

The most important single conclusion that canbe drawn from this effort is that a workable

tool for the designof redundancywithin a spacecraft system has been developed. Although

designedfor the Voyager mission and the Voyager spacecraft system, the tool is adaptable

to other spacecraft in complex mission environments.

In the developmentof this tool, decisions often had to be madewhether or not to simplify an

assemblageof information. For example, a decision had to be madewhether or not to

consider degraded modes of hardware performance, whether or not to consider degraded

modes of mission performance, etc. In nearly all cases, the decision was not to simplify

the tool and to avoid assumptions and approximations. By employing this strategy, it was

recognized that some facets of the tool would probably be unnecessarily complicated. How-

ever, this strategy did permit rapid simplification as soon as such complications were

clearly recognized. In contrast, a strategy to simplify at every turn would have required

either several iterations of the development cycle or a tool of little value.

In the spirit of the preceding statement, and based on the findings of the several optimization

runs of Section 3.7, it can be concluded that the proper level of complexity was generally

designed into the tool, with perhaps one exception. In the Radio and Command assembly

(TC), nine output states were defined, including seven degraded states. It now appears

that the number of output states could have been significantly reduced--perhaps to five

output states.

It is believed that this study has demonstrated the power of the configuration optimization

tool in the conceptual design stages of a spacecraft program. No longer need subsystem

engineers compete with one another for each ounce of weight. Redundancy can now be

applied to the system design in an optimum and integrated manner.

This system optimization tool can be made even more powerful if the refinements suggested

in the previous sections can be incorporated. The potential of this tool, however, can only

be realized if it is used as a dynamic aid to the continuing design of the Voyager spacecraft.
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SECTION4

SELECTION OF MISSION CONFIGURATIONS

4.1 OBJECTIVES

The objectives of the mission redundancy activity were to develop techniques for the selection

of the initial Voyager mission configuration, and the probable sequence of configurations to

follow the initial configuration, and to recommend a typical sequence of mission configurations.

MIssion configuration selection is meant to connote the number and types of systems which

should be employed at a given launch opportunity, with particular reference to the number

and types of launch vehicles, spacecraft, and capsules. During the course of the study,

the capsule system was redefined as two systems: (1) the capsule bus system and (2)

the surface laboratory system. It was felt, however, that recognizing the subdivision

at that point would not appreciably aid the study and, accordingly, the capsule system

as defined in this section includes both the bus and the surface laboratory.

It is in this area of activity that Stanford Research Institute (SR1) of Menlo Park, California,

was engaged to apply the principles of "decision analysis" to the selection of Voyager

mission configurations. Major portions of this section were authored by SRI; viz.,

Sections 4.3, 4.4, 4.7, 4.10, 4.11, and 4.12 in their entirety, and portions of Sections 4.5

and 4.8.

4.2 ORGANIZATION

The mission configuration selection activity was divided into several areas of activity

(Figure 4-1) :

a. Pilot Model: Definition of a small-scale or pilot version of the Voyager

project, and selection of optimum mission configurations and sequences

within this pilot framework.

b. Problem Structure'. Definition of potential mission configurations to be

considered in the problem structure. Definition of a comprehensive and

mutually exclusive set of project outcomes.
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c. Decision Model: Definition of the state variables and generation of the mission

configuration decision tree.

d. Probability Model: Modeling of the probabilities of potential mission configura-

tions achieving given project outcomes.

e. Cost Model: Modeling of the costs of potential mission configurations.

f. Value Model: Modeling of the relative values of possible outcomes of the project.

g. Mission Configuration Selection: Development of a computer program system

employing decision analysis to select the initial Voyager mission configuration

and probable subsequent sequence of configurations. Exercise of the tool to

recommend a typical preferred 1973 mission configuration and subsequent

s equ enc es.

Section 4 is organized generally along the lines of Figure 4-1. A brief introduction to

decision analysis and its application to Voyager is given in Sections 4.3 and 4.4. Section 4.5

then reviews the pilot phase of the mission configuration selection effort. The problem

structure (i. e., potential mission configurations and project outcomes) is reviewed in

Section 4.6. The four basic models of the configuration selection system (the decision

model, probability model, cost model, and value model) are reviewed in Sections 4.7

through 4. I0. Section 4. ii discusses the SPAN (Space Programs ANalysis) system, the

computer program system which creates the decision structure and performs the necessary

analyses to extract optimum configurations and sequences. Finally, Sections 4.12 and 4.13

discuss typical results and present conclusions and recommendations.

4.3 DECISION ANALYSIS

Decision analysis, an applied extension of statistical decision theory, is a procedure for

the logical and quantitative analysis of the factors that influence a decision. A decision, in

this context, is an allocation of resources as opposed to a generalized mental commitment

to follow a given course of action or to pursue given objectives. A logical decision is one

that selects the most economic alternative in terms of the preferences of the decision-maker.

The values and costs of the possible courses of action and their possible outcomes, and the

probability of these outcomes, are determined on the basis of the knowledge and experience
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available to the decision-maker. A quantitative analysis is one that places the decision in

an unambiguousstructure in which numerical quantities encodethe factors that influence

the decision in order to quantitatively weigh these factors. Decision analysis incorporates

the fundamentals of decision theory as a meansof quantifying the decision process while

maintaining the logical basis for a rational decision.

Decision making requires the study of uncertainty. Most decisions would be easy if there

were no uncertainties in the outcomes resulting from a course of action. When the outcomes

are uncertain, even simple decisions become more difficult to analyze. The theory of

probability provides the basis for the meaningful treatment of uncertainty. Probability is

a state of mind and not of things. All prior experience must be used in measuring proba-

bilities. If we have seen a lot of data, such as a million flips of a bent coin, the over-

whelming data will be the predominate influence on the probability assignment to heads on

the next flip. If we have never flipped a bent coin before, the probability measurement must

depend on judgment and prior experience, possibly including physical models we might build

to describe the dynamics of flipping a bent coin. If we have seen only a few flips of the bent

coin, we must combine our prior experience with the limited new data. The inferential

theory of probability, based on Bayes' interpretation, provides a means of logically combin-

ing the new data with the prior probability assessment.

To allocate resources logically, values must be placed on outcomes. Because the outcomes

and hence the values are uncertain, criteria must be established for choosing among various

value lotteries. The theory of utility provides a basis for encoding the risk aversion of the

decision-maker; i. e., the desire to substitute an alternative with lower expected value but

lower risk for an alternative with higher expected value and higher risk. In many cases,

the time preferences of the decision-maker must also be incorporated.

The primary purpose of decision analysis is to increase the likelihood of good outcomes by

making good decisions. A good outcome is one we would like to occur. A good decision is

one logically consistent with the information and preferences of the decision-maker. Decision

analysis provides a framework for making good decisions; only chance determines the ulti-

mate outcome.

4-4



The principles on which decision analysis is based were conceived in the days of Bernoulli,

Bayes, and Laplace, 200 to 300 years ago. Since then these principles have been studied

extensively and turned into elaborate theories. Recently, operations research has applied

these principles to operational problems, and then management science brought them to

repetitive management problems. Decision analysis is the natural next step into the one-

of-a-kind r_ajor decisions. During the last 10 years, decision analysis has been

applied primarily to industrial and business decisions -- decisions such as new product

introductions, strategic planning of business operations, and experimental program planning.

Recently, applications have been made to governmental problems. The decison analysis

of space projects is a significantly new application.

4.4 NATURE OF THE VOYAGER PROBLEM

In conceiving and carrying out a space program, decisions are made at many levels. At the

national level, for example, decisions must be made regarding the amount of funding to be

allotted to the space program at the expense of other national goals. Within NASA, total

space program funding must be divided between manned and unmanned programs. Within

unmanned programs, funds must be divided into such projects as planetary exploration

versus earth resources satellites.

In all cases, the type of inputs required for making the decisions are essentially the same.

For each alternative available to the decision maker, he needs to know the range of possible

outcomes, the costs and values of each alternative-outcome pair, and the probabilities of

each outcome.

This initial application of decision analysis to a space project, Voyager, was undertaken

in the following postulated context:

"A Voyager project for the unmanned exploration of Mars has been approved

with an initial launch scheduled for 1973. Preliminary studies have indicated

that the Saturn V launch vehicle, which can put 40,000 to 70, 000 pounds on a

trajectory to Mars, is optimum for this project. It is desired to place orbit-

ers around Mars as well as to land vehicles on Mars to collect the scientific
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data. In the preliminary studies that showed the Saturn V to be the appropriate

launch vehicle, general characteristics desired of the orbiter and landing vehicle

were also determined."

While the problem is constrained significantly by this statement, the manager of such a

Voyager proj ect still has many decisions to make. The following are er_amples:

a. Should one, two, or perhaps more Saturn V's be used at each launch

opportunity?

b. Assuming that the orbiter is to serve as a "bus" for delivering the

landing vehicle to the vicinity of Mars, should each bus carry one or

more landing vehicles?

c. Should the total capability of the Saturn V be used to carry a single,

heavy planetary vehicle (one orbiter with one or more landers), or

should two lighter planetary vehicles be carried to provide redund-

ancy at the system level?

d. Given the desired characteristics of the orbiter and lander postulated

previously, should the maximum desired capability be designed into

the first vehicles, or should a more evolutionary design approach

be taken? If evolutionary, what steps in sophistication are logical?

In short, the Voyager project manager must define more precisely the mission configura-

tions--the number of launch vehicles, the orbiters and capsules to be employed, and the

capabilities of the orbiters and capsules. In particular, the mission configuration must be

selected for the first launch, and a policy or strategy must also be established for

determining what to do at subsequent launches. As is discussed, the first choice cannot be

logically made without considering the overall project objectives and the configuration

sequences available to satisfy those objectives.
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4.5 PILOT PHASE

To develop the application of decision analysis to the problem posed, a two phase program

was adopted. The first phase (pilot phase) consisted of defining a simplified version

of the previously described decision. To the maximum extent possible, however,

the essential features of the problem were accurately represented, and only the dimension-

ality reduced. This smaller problem allowed easier development of the modeling approach,

and exercising the model provided insight into the level of detail required in structuring

the inputs to the decision. The pilot phase also provided a mechanism for discussion of

the model itself, and the usefulness of its results.

4.5.1 PILOT PROBLEM DEFINITION

For the development of the pilot model, it was postulated that the Voyager project manager

had already answered many of the questions previously posed. In fact, he had decided that:

a. Only a single Saturn V will be launched at each opportunity.

b. Only one capsule will be carried to Mars by each orbiter.

c. Two planetary vehicles will be carried on each Saturn V.

d. The design characteristics of the orbiter have been established,

and a single basic orbiter design will be used throughout the project.

The remaining decision, then, concerns the desired capability of the initial capsule and

the desired steps in the evolution of the capsule to the eventual level of capability required.

Should he, for example, elect to provide the eventual level of capability in the initial capsule

in the face of uncertainties in the Martian environment and difficulties in developing complex

equipment to survive the prelaunch sterilization environment?. Or should he choose a much

simpler capsule that can obtain some information about the Martian environment to be

factored into the design of subsequent, more complex vehicles? Which approach yields the

highest expected value from the project, and what are the relative costs?

Four possible capsule configurations were postulated, representing steps in sophistication

from the simplest useful capsule to the most complex one capable of obtaining all the data

desired. These four configurations are illustrated in Figure 4-2, along with the level of

achievement they can produce if they are successful.
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The first configuration (C1) is a simple atmospheric probe that is not intended to survive

impact with the Martian surface. It is separated from the orbiter as the planetary vehicle

approaches Mars and is deflected to an impact trajectory by a small rocket. It contains

instruments that measure such parameters as density profile and composition of the Mar-

tial atmosphere during the entry phase. If it is successful, it achieves an outcome that is

denoted as level 1 (L1).

The second configuration (C2) is carried into Martian orbit with the orbiter and subsequently.

deorbited. It also contains the instruments for measuringatmospheric properties, and in addi-

tion contains a television camera for returning pictures of the Mars surface during the late

descent phases. If totally successful, it achieves L1, atmospheric measurements, plus L2,

descent television. It can, of course, achieve L1 only if a failure prevents it from return-

ing the television pictures. For the pilot model, it is assumed that it cannot achieve L2

without achieving L1. For most cases, this assumption is reasonable.

The third configuration (C3) is the first one intended to survive impact and operate after

landing on Mars. It also enters from orbit, contains the atmospheric experiments plus

descent television, and can carry out relatively simple surface experiments and provide

closeup television after landing. If totally successful, it can achieve L3 (surface experi-

ments plus landed television) as well as L2 and L1. With partial success, it can achieve

L2 and L1, or just L1.

The fourth configuration (C4) is the most sophisticated lander considered. It contains all

the experiments discussed above plus the capability to carry out meaningful life detection

experiments on the surface of Mars. Total success then leads to L4 + L3 + L2 + L1.

Partial success leads to lesser levels of achievement.

The decision to be made is the selection of a policy for mission configuration choices;

that is, the choice of an initial mission and a rule for determining the choice of each success-

ive mission, depending on the earlier mission choices and their known outcomes.
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4.5.2 DECISION TREE

The heart of the decision model is a decision tree that represents the structure of all possi-

ble sequences of decisions and outcomes, and contains slots into which cost, value, and

probability inputs must be fed. As illustrated in Figure 4-3, the tree contains two types

of nodes (decision nodes and chance nodes) and two types of branches (alternative branches

and outcome branches). Emanating from each decision node is a set of alternative branches,

each branch representing one of the configurations available for selection at that point of

decision in the project. Each chance node is followed by a set of outcome branches, one

branch for each outcome that may be achieved from that point in the project represented

by that chance node. Probabilities of occurrence and values are assigned to each of these

outcomes. Costs are assigned to each decision alternative.

ALT ERNATIVE

BRANCH ES:

COSTS

OUTCOME

BR ANC H ES:

VALUES

PROBABILITIE'.

×

DECISION

NOD E:

MAXIMIZATION

CHANC E

NOD E:

EXPECTATION

DECISION

NODE:

MAXIMIZATION

Figure 4:3. Tree Relationships
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Two fundamental operations, expectation and maximization, are used to determine the

most economic decision from the tree. At each chance node the net expected (mean) value

(NEV) is computed by multiplying the probability of each outcome by the sum of its value

and the NEV of the node following that outcome and summing over all such products

(outcomes} following the node. At each decision node, the NEV of each alternative is

calculated as the expected value of the following node (successor node} less the cost of

the alternative. The optimum decision is found by maximization of these values over the

set of possible alternatives; i.e., by selecting the alternative of highest NEV.

4.5.3 ORDER OF EVENTS

The particular sequencing of mission configuration decisions and outcomes is a significant

feature of the Voyager project. As illustrated in Figure 4-4, the initial event of significance

is the selection of the 1973 mission configuration. But since lead time considerations

1968 '69 '70 '71 '72 '73 '74 '75 '76 '77 '78 '79 • • •

1st Mission Select Launch Outcome

2rid Mission Select Launch Outcome

3rd Mission Select Launch Outcome

4th Mission Select

5th Mission Select

Launch Outcome

Figure 4-4. Order of Events
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require that the 1975 configuration decision be made in 1972, the second mission

decision must be made before the first mission results are obtained. Similarly, the

1977 decision must be made before the results of the 1975 mission are obtained, although

after the 1973 mission results. In general, then, a mission configuration decision must

be made in ignorance of the results of the previous mission.

4.5.4 CONSTRAINING OF CONFIGURATION SEQUENCES

Some logic must be applied in defining what configurations can be selected at each decision

node. Obviously, it does not make sense to choose a C1 when the program has already

reached outcome level 2, so this choice is not permitted in the decision tree. Other restric-

tions can also be made which are not quite so obvious. For this pilot model, the following

logic is applied:

a.

bo

co

do

It is assumed that the most complex lander will not be available in 1973

because of the development time required.

Sequences in which a complex lander is followed with a simpler one are

not considered; that is, the complexity of the capsule only increases

time.

Because of the order of events just discussed, whereby one vehicle

is in flight and another being fabricated for the next opportunity,

some logic was required to determine what will be done in the

event of failure of the vehicle in flight. Failure is specifically

defined as no improvement in the previous level of success as a

result of the current flight. We postulated that should failure

occur, the next configuration chosen could not be more complex

than the one being constructed. That is, no advance was allowed

in the face of failure.

The achievement of level 4 is assumed to terminate the program.

Additionally, we postulated that two failures in succession, where

again failure means no advance in level of achievement, terminated

the program. These two factors constrained the overall tree size.
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4.5.5 TREE EXAMPLE

A completeddecision tree for the pilot Voyager project, with the additional assumption that

L2 is the highest level of success, is presented in Figure 4-5. The models that produce

the numerical probabilities, values, and costs usedin the example are discussed later.

Node1, at the left side of the tree, is the initial decision to select either a C1 or a C2 for

the first launch opportunity. The box designatedL0 abovethis nodeindicates that the state

at this nodeis the baseline level of achievement. Supposea C1 is selected. The cost of

that C1 is $850million, indicated by the "-850" written under that branch.

As a result of this choice, the next node is decision node 2. The box designated L0, C1

above this node indicates that the state at this node is the current level of achievement and

a C1 is being constructed for the first launch. Now either a C1 or C2 must be selected for

the second launch. If a C1 is selected, the cost is 575, and the next node is chance node 7.

The two branches following node 7 represent the possible outcomes of the first launch. The

L0' outcome, failure to better L0 on the first try, occurs with probability 0.1, whereas the

L1 outcome occurs with probability 0.9. The value of the L0' outcome is zero, whereas

the value of the L0 outcome is 1224.

136

C1

832 C2

-1000

C1

C2

-740

-650

1408 LO'

-575

2106

1303

1992 LO" 941 1591 _

o
C2 1224 -650 _21252 -740 ] 2 0 0

941" 1714_

L1 X C2
1224 -740

201 2227 LO"

 o2® \
-650 64

L2 \\
_J\

\
J

/

15771

941

.60

L2

2938_

Figure 4-5. Example Decision Tree
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Follow the case of the L1 outcome to decision node 34. The state L1, C1 at this node means

that the highest level of success is L1 and a C1 is being constructed for the next launch.

Since L1 has already been achieved at this point in the tree, a C2 is the only configuration

that may be launched in the third opportunity, at a cost of 740. This leads to decision

node 35, where the state is L1, C?.

Node 35 in the example tree illustrates coalescence of nodes, a feature vital to maintaining

a manageable tree size. Node 35 on the upper path through the tree can be reached from four

other paths through the tree, as indicated in the figure. If the coalescence did not occur,

the portion of the tree following node 35 would have to be repeated four additional times.

In the full pilot tree, coalescence resulted in a reduction of the number of branches in the

tree by a factor of 30.

Along the path 1-2-7-34-35, at decision node 35 a C2 must be selected for the fourth

opportunity. At chance node 36, the outcome of the third launch is either an LI' (failure

to better L1 with one attempt, which leads to node 38), or an L2 (which achieves a value of

1714 and successfully completes the program). These outcomes occur with probability 0.3

and 0.7, respectively.

If LI' is the outcome, chance node 38 is reached where the outcome of the fourth launch is

represented. The probability of LI" is 0.24, and the probability of L2 is 0.76. Note that

the probability of L2 has increased over that of node 36 (0.7 to 0.76) because of the experi-

ence gained with the earlier attempt.

The reader can similarly follow and interpret many other paths through the tree. A

decision policy is a complete selection of particular alternatives at all decision nodes.

This limits the set of all possible paths to a smaller subset. (It is impossible, for example,

to reach node 26 if a C1 is chosen at node 1.) The probabilities, values, and costs of these

paths then determine the characteristics of the decision policy.

The most economic decision policy, given the input data specifications, is the policy that

maximizes the net expected value of the project; i. e., expected value less expected cost.
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A technique that eliminates many of the nonoptimum policies from explicit consideration

is called the "roll-back" technique. It starts from the right side of the tree and progresses

left to the beginning of the tree, making all decisions and calculations in reverse chrono-

logical order. Thus, when each decision is made, only policies that optimize decisions for

the following decision nodes are considered.

Consider node 38 in Figure 4-5. At this chance node, the probability of achieving LI", which

is worth nothing, is 0.24, and the probability of achieving L2, which is worth 1714, is 0.76.

Thus, the NEV of node 38 is 0. 24(0) + 0.76(1714) = 1303. This number is written near node

38.

The calculation are carried out backward in this manner through the tree. The first decision

node with more than one choice is node 2. If a C1 is selected, it costs 575 and leads to node

7 with a NEV of 1408, which yields 1408 - 575 _ 833. If a C2 is selected, it costs 740 and

leads to node 12 with a NEV of 2106, which yields 2106 - 740 _- 1366. Since 1366 is greater

than 833, the most economic decision is to select a C2 at node 2, which results in NEV(2) _ 1366.

Finally, the first decision is a choice between a C1 with an NEV of 516 or a C2 with a NEV

of 832. Maximum NEV is achieved by the choice of a C2 resulting in NEV(1) = 832. This is

the NEV of the entire project at the time the first decision is made.

The full pilot decision tree is shown in Figure 4-6.

4.5.6 PILOT PROBABILITY MODEL

In practice, it is difficult to estimate the probabilities to be attached to the outcome branches

leaving probabilistic nodes. Available data and engineering judgment are more easily

applied to the estimation of success probabilities for more elementary operations. A

probability model can then combine these inputs into the desired outcome branch probabilities.

For purposes of the pilot analysis, probability estimates were obtained by applying engineering

judgment to the various phases of the mission top level function flow diagrams pictured in

Figure 4-7. In addition to estimating initial probabilities, it was necessary to estimate how

subsequent mission probabilities would be affected by results obtained on early flights.
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Figure 4-7. Voyager Mission Flow Diagrams

The results of this analysis for configurations C1 and C2 are tabulated in Figure 4-8. Noting

that a prime (') attached to a level symbol indicates failure in an attempt to better that level,

we see that the probability of failing to reach L1 with a C1 from L0 is 0.10; the probability

of failing to reach L1 with a C1 after failing once is 0.08. The general philosophy of this

model is that success increases the probability of achieving desirable outcomes, and so does

failure (designs are improved due to information gained in the failure), although to less extent.

Thus, the probability of failing with a C2 starting at L0 is 0.25; the probability of failing with

the same configuration starting at L0' is 0.20, with the remaining 0.05 of probability being

spread proportionately over the other outcomes.

4.5.7 PILOT COST MODEL

The costs attached to the alternative branches in the decision tree are constructed by the cost

model using representative system cost data as tabulated in Figure 4-9. It is assumed that

second and subsequent copies of hardware systems (bus, capsules)could be produced at halfthe
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Figure 4-8. Transition Probability Inputs
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Figure 4-9. Pilot Cost Inputs
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initial cost of developing and producing the first system. Also, configuration production

experience on a C1, C2, or C3 contributes a 20 percent reduction to the cost of producing a

C2, C3, or C4, respectively.

4.5.8 PILOT VALUE MODEL

The value of various accomplishment in the Voyager project can be divided into assigned values

and derived values. The assigned values are the values of the Voyager project accomplishments

to the world external to the Voyager project. Derived values are the contribution of earlier

mission accomplishments to the probability of success in later Voyager missions. Assigned

values must be determined directly. The derived contributions are incorporated by increases

in the probability of success in future missions, thus increasing the probability of eventually

achieving future assigned values.

Assigned value itself can be divided into two kinds of value, direct and indirect value. Direct

value is the value of the knowledge produced by the outcomes, such as visual records of Mars

and characterization of Martian biology. Direct value is achieved independently of the means

of gaining the knowledge. Indirect value is the value of obtaining and possessing the

knowledge (rather than the knowledge itself), such as technological spin-off, national prestige,

satisfaction of the urge to explore Mars, and the competitive pleasure of being first in space.

Both direct and indirect values provide the total incentive for the Voyager project and, to make

proj ect decision rationally, both must be included in the evaluation of project outcomes.

To derive a value function, a value tree was constructed by considering first the major

components of assigned value, both direct and indirect, and then the subeategories of each type,

identified in more and more detail until no further distinction was necessary. Then, each tip

of the tree was subdivided into four categories, each corresponding to the contribution of one

of the four achievements to the value subcategory represented by that tip.
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Specifically, the value tree that served as the value function in the pilot analysis is pictured

in Figure 4-10. The number 1.0 attached to the node at the extreme left represents the total

value of all the objectives of the pilot Voyager project (thus, the value of

L3, and L4). The four branches emanating from this node represent the

of value recognized by the pilot model. The number 0.62 attached to the

represents the fraction of total value assigned to science. Two branches emanate from the

science node, and 60 percent of the science value falls into the category of biological science.

The 0.37 attached to the biological science node represents the fraction of total value attached

to biological science and is obtained by taking 60 percent of 0.62 (the fraction of total value

attached to all science). Finally, the bottom branch following the biological science node

indicates that 78 percent of the biological science value is achieved by jumping from L3 to L4.

achieving L1, L2,

four major categories

upper branch

The final step in value modeling is to obtain the fraction of total value to be attached to achieving

each of the four levels. If we add all the contributions to achieving L1 (contribution to world

opinion, U.S. public favor, physical science, etc. ) the result is the fraction of value that should

be attached to achieving L1. The same process is followed for reaching L2 from L1, L3 from L2,

and L4 from L3. The results of such a calculation are in the lower-left corner of Figure 4-10.

1.0

RESULTS

L1 .1224

L2 .1714

L3 .3511

L4 .3551

_ENE FIT TO

OTIIER SPACE

PROGRAMS

0.24

O. 12 O. 15

- 1,1 - 0. 018
0.30

L2 - O. 036

L3 - 0. 036

L4 - 0. 030
0.02 0.2

• L1 - 0. 004
0.3

1,2 - 0. 006

L3 - 0. 004

L4 - 0. 000

Figure 4-10. The Pilot Value Tree
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4.5.9 RATIONALE FOR SELECTING THE OPTIMAL POLICIES

A policy is a setting of each decision node in the decision tree; i.e. it is a complete strategy

for conducting all missions in the Voyager project.

The selection of a policy limits the number of paths that might be transversed through the

decision tree. However, there are still many alternative paths that can be transversed, and

they are determined by individual mission successes and failures as the project unfolds. These

vagaries of chance are encoded in the probability model. Thus, for each policy, a probability

distribution can be derived over all the paths that can possibly be taken. Using the Cost and

value models, a cost and value can be assigned to each path. Thus, each policy is represented

by a lottery on cost and value, as illustrated in Figure 4-11.

To select an optimum policy, we must decide between many different cost-value lotteries.

Figure 4-12 illustrates three different policy lotteries in the cost-value plane. Policy 3 tends

to have costs similar to policy 2, but lower values than policy 2. Policy 3 also tends to have

higher costs than policy 1, but similar values. Thus policy 3 does not look very desirable.

However, policy 2 tends to have both higher values and higher costs than policy 1, and we

must determine whether the chances of higher values are worth the chances of higher costs.

In general, the risk aversion preferences of the decision-maker must be encoded to make this

decision. To gain insight into this example, let us assume that the decision-maker wishes

to base his decisions on the expected value and cost of each policy. Thus, each policy lottery

is replace d by a single point at the expected cost and the expected value of that policy. These

points are exhibited for nine hypothetical policies in Figure 4-13.

The policies in Figure 4-13 can be separated into three classes: totally dominated policies,

marginally dominated policies, and dominant policies. A policy is totally dominated if there

is at least one other policy that has both a lower expected cost and a higher expected value.

Policies 6 , 7 , 8 and 9 are totally dominated policies. Totally dominated policies can

be dropped from further consideration. This simplifies decision-making, because the bulk

of the possible policies are of this type.
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The remaining policies connected by a dashed line in Figure 4-13 are called envelope policies

and are of two types: marginally dominated policies and dominant policies. Policy 3 is an

example of a marginally dominated policy. The slopes of the lines A, B, and C in Figure 4-13

show the marginal return from increasing the funding level from 1 to 2 to 3 , and from

3 to 4. The marginal return B is less than the marginal return C. This means that

increasing the funding from 2 to 3 brings less return per unit cost than the increase

in funding from 3 to 4. Since each program is competing for funds with other programs,

it would be unusual to find that directing funds from other programs is worthwhile up to

point 3 , but is not worthwhile beyond 3. For this reason, marginally dominated policies

such as 3 were eliminated from contention.

The remaining policies, 1, 2, 4, and 5, are called dominant policies. The selection has

been reduced to this set, which is shown in Figure 4-14. Analysis of the decision tree

produces this set of dominant policies and their associated expected costs and benefits.

4.5.10 DETERMINATION OF DOMINANT POLICIES AND PROFIT INTERPRETATION

To determine the dominant policies,anumber of alternative policies must be compared. For

example, in the 60-node pilot tree, there are approximately 2,000 policies. However, the

roll-back process of decision tree evaluation presented earlier also provides a method of

finding the dominant policies without evaluating each policy explicitly. Recall that in Subsection

4.5.5, expected costs were subtracted from expected values. To do this, value points are

converted to dollars by multiplying each point by a conversion factor k. Since the entire

value tree is assigned one point, k is a dollar value assignment to the Voyager project.

Figure 4-15 shows the construction of expected profit from an expected cost-expected value

plot and an assignment of k. Picture this result as obtained by shining a light beam across the

figure from the direction of the upper right hand corner, so that the rays of the beam have slope
-1

. The expected profit for the policy is determined by the shadow of the light beam on the

expected cost axis, with increasing profit to the left.
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Figure 4-16. Shadows of Policy Points

If the light beam is shined on all the policy points simultaneously, as in Figure 4-16, the

shadows of the policies on the expected cost axis give the expected profit for each policy.

The policy with the leftmost shadow is the policy of maximum expected profit, and thus it is

the policy that results from evaluation of the decision tree for the given t. If the light is shi,

more vertically from the top, lower cost policies have the leftmost expected profit shadow;

and as the light is shined more horizontally from the right, higher cost policies have the

leftmost expected profit shadow. Consideration of the geometry of this problem shows that

sweeping the light from vertical to horizontal (k from zero to infinity) will produce exactly

the dominant set of policies illustrated in Figure 4-14. Thus, successive evaluations of the

decision tree for different assignments will sweep out the dominant policies. Algorithms ha_

been developed that sweep out the entire set with high efficiency.
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4.5.11 RESULTS AND CONCLUSIONS

Figure 4-17 lists several policies, as well as interpretations of the policies, and shows their

expected costs and expected value fractions. Policy 1 (P1) consists of flying an initial C3

followed by C4's until the program terminates, either by achievement of L4 or by two failures

in succession. P2 is an initial C1 followed by C4's, and P3 is two Cl's followed by C4's .

These are the three optimum policies, and the interpretations show that as higher dollar

value is attached to the project, the policies become more conservative. These policies are

plotted in Figure 4-18.

POLICY

1

2

3

4

5

6

7

8

9

10

11

12

13

INTERPRETATION

C3, C4

C1, C4

C1, C1, C4

C2, C3, C4

C2, C3 (except C4 @ L1)

Stepwise

C3 till L1, C4

C1 then as in 7

C3 till L2, C4
L1 -_C4

C1, C1, LO'-_C3 till L2, C4

C1, C1, C3, C4

C1, C1, C3 till L2, C4

C2, C3, C4

EXPECTED

COST

$ 4124 M

$ 4443 M

$ 5031 M

$ 4488 M

$ 4816 M

$ 5885 M

$ 4555 M

$ 4609 M

$ 4630 M

$ 5092 M

$ 5167 M

$ 5720 M

$ 6475 M

Expected Fraction
of Total Value

BALANCED

0. 802

0.815

0. 827

0.769

0. 759

0.729

0.796

0.805

0.795

0.825

0.816

0. 813

0. 735

LIFE

O. 669

O. 720

O. 730

Figure 4-17, Comparison of Several Policies

Policy P6, the stepwise policy, is to start with a C1 and advance the configuration sophistication

by one step whenever possible. This policy has _e lowest expected fraction of total value.

Policy P10 is an example of a complicated policy. It begins with two Cl's. If the first C1

achieves L1, the project continues with C4's. If the first C1 achieves L0' (it fails), C3's

are flown until L2 is attained, and then C4's follow. Interpretation of other policies can be

read from Figure 4-17.
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All possible policies for the pilot Voyager

decision tree lie within the dashed lines of

Figure 4-18. Policies P1, P2, and P3 are

the dominant policies. Policy P1 is the

minimum expected cost policy, whereas P3 <
>

is the maximum expected value fraction <

policy. Policy P2 is a tradeoff policy with

expected values and costs between those of o
z

P1 and P2. P2 is optimum for intermediate

project dollar value while P3 and Pl are <

optimum for high and low extremes,

respectively.

The remainder of the policies shown are all

.85
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.8£

F P2 P3
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_. o oP9

\ P7

P4

o P12

P6

I I I I I

4.0 4.5 5.0 5.3 6.0 6,3

EXPECTED PROJECT COST

(BILLIONS O F DOLLARS)

totally dominated policies. Of course, there Figure 4-18. Comparison of Policies for

are many more policies that were not Balanced Value Assignments

examined. All of these policies, however, are either totally dominated or marginally dominated.

The methods described in Subsection 4.5.10 allow determination of the dominant policies

(P1, P2, P3, in this case) without explicity considering most of these dominated policies.

Figure 4-19 illustrates optimal policies for two different value tree assignments, the balanced

value assignment described in Figure 4-10, and an assignment of all value to the life

experiment (L4). The dominant policies are found by varying the dollar value assignment to

the Voyager project (k) as described in the previous section. For both value assignments,

the dominant set of policies consists of policies P1, P2, and P3.

Work with the pilot model provided encouragement that this approach is truly useful. The

decision tree provides a means of explicitly describing the possible sequences of alternatives

and outcomes and the options open to the decision-maker at any decision point. The input

models provide a language for explicitly describing probabilities, values, and costs in the

project.
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Figure 4-19. Dominant Policies for Different Value Assignments

It was found that exercising the model with varying inputs provided insight into the relative

importance of the many factors involved and their interrelationships. Those using this

model were able to predict in advance the effect of changing value, cost, or probability input

with reasonable accuracy. The fact that the ability to do this greatly improved indicates

the improvement in understanding of the interrelationship of the many factors involved.

Based on the promising results of working with the pilot model, a full-scale model was

developed, encompassing most of the factors involved in selecting the actual Voyager

mission configuration. It includes nearly all the realistic configurations available within the

context of using a Saturn V launch vehicle. It provides a more precise structure for the assignment

of initial values, probabilities, and costs, and for updating probabilities and costs based on

results achieved. Table 4-1 is a summary comparison of the complexity of the pilot model

with the more complete model. In addition to the comparisons listed in Table 4-1, some of the

ground rules postulated for the pilot model that affect the available choices at each decision

node were found to be undesirable, and these were modified in the more complete model. The

remainder of this section is devoted to the full-scale model. 4-27



Two technical reports on the pilot model were issued during the study. An interim report

(VOY-C3-TR2) was released on 23 November 1966, and a final report (VOY-C3-TR6) was

published on 31 January 1967. The final report references some material from the interim

report.

Table 4-1. Comparison of Pilot and Full-Scale Models

Parameter

Number of Decision Tree Nodes

Number of Potential Mission

Configurations

Number of Project Outcomes

Computing System Employed

Pilot

Model

60

4

5

Time-sharing

(GE 235)

Full-Scale

Model

3200

14

56

Batch process

(GE 635)
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4.6 PROBLEM STRUCTURE

4.6.1 POTENTIAL MISSION CONFIGURATIONS

The major constraint upon the selection of potential mission configurations for the full-scale

decision model is the size of the decision tree resulting from many alternative configurations

being available at each decision node. To keep the computer program system running time

short, and thus encourage exercising the tool, it is considered desirable to keep the size

of the decision tree small enough to permit all of the data and programs to be contained in the

core memory of a large-scale computer. On the other hand, it is equally desirable to pro-

vide a spectrum of configuration choices at each decision node to avoid constraining the

solution with preconceived answers.

The total number of potential mission configurations is far too large if all of the parameters

of interest axe allowed to vary. To illustrate, the decision model could be asked to con-

sider all possible combinations of:

o

Orbiter designs of varying capability.

Capsule designs of varying capability.

Use of launch vehicles other than Saturn V for early missions.

One or more Saturn V launch vehicles in each opportunity.

One or more planetary vehicles on each launch vehicle.

One or more capsules of the same or different design on each planetary vehicle.

Capsule entry mode; i. e., direct or from orbit.

Capsule terminal deceleration mode; i. e., parachute or retrorocket.

Capsule landing mode; L e., nonsurvivable, rough landing, or soft landing.

Landed capsule data return to earth; L e., direct or via relay through the Mars
orbiter.
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4.6.1.1 Simplifying Considerations

Several thousand potential configurations could be formed by suitable combinations of the

above choices. This number is at least two orders of magnitude too large for a reasonably

sized decision tree and, accordingly, several initial simplifications are applied to the con-

figuration parameters.

It is first observed that the design of the spacecraft orbiter is relatively insensitive to a

wide range of mission concepts. For example, as the mission profile changed from the

Phase IA, Task A concept of direct capsule entry to orbital entry in Task B, the only major

difference in the planetary vehicle design was in the size of the propulsion system. Changes

did occur in other spacecraft subsystems, but they are small compared to the propulsion

system change and the changes required for the capsule. Hence, it is concluded that one

basic orbiter design could cover the entire spectrum of mission configurations.

It is considered highly desirable to consider a range of capsule types from simple atmos-

pheric probes through the complex, soft landed, biological laboratory. Based upon pilot

model results, it is felt that this range is adequately characterized by five capsule types:

a.

Do

co

do

e,

A small nonsurvivable atmospheric probe capable of returning entry data and

atmospheric profiles.

A small, nonsurvivable probe capable of atmospheric and entry experiments and

descent television.

A soft lander, of medium size, capable of atmospheric and entry experiments,

optional descent television, surface television, and simple surface experiments.

A large soft lander, capable of entry and atmospheric measurements, optional

descent television, sophisticated life detection experiments, surface television,

and some surface experiments. It is assumed that this lander could not be

made available in time for the first Voyager launch in 1973, so a fifth capsule type,

available in 1973, was proposed.

A large soft lander, identical to (d), except that the payload devoted to biological

experiments is replaced by a complete set of sophisticated, non-biological, surface

experiments.

4-30



It is further recognized that some of the possible configuration choices are better settled

by detailed engineering trade studies. For example, the choice between parachute and

rocket final deceleration, or between rough and soft landing, requires considerable engin-

eering study to develop the necessary probability, cost, and value data to describe the

alternatives to the decision model. Moreover, after the engineering studies are complete,

it is likely that the correct solution will be apparent without the need for decision analysis.

For choices of this type, it was decided to leave the decision outside the decision tree, and

to accommodate varying input costs, probabilities, and values in the submodels with the

trade study results.

Other real project considerations (e. g., launch vehicle capability, mission operations

capability, etc. ) further constrained the number of choices. For example, it is presently

planned for the mission operations system to support data return from a maximum of four

Voyager systems at the same time. Configurations consisting of more than two orbiters and

two landed capsules would require revision to the mission operations system. Accordingly,

the choices available are assumed to be limited to a maximum of four systems capable of

simultaneous, long-term, data return. Thus, the capability of two Saturn V's to launch

more than four such systems per opportunity is not assumed to be available. Combina-

tions such as an orbiter and two soft landers on each of two launch vehicles, or two orbiters

each with a soft lander on each of two Saturns, are not included in the mission configuration

alternatives.

Furthermore, the payload and volume limitations of the Saturn V launch vehicle prohibit

multiple large capsules per planetary vehicle with two planetary vehicles per launch vehicle.

Additionally, it is considered unlikely that NASA will undertake the development of two new

capsule types for a single Voyager launch opportunity. Hence, all dual capsule (per

planetary vehicle) configurations are restricted to combinations of the nonsurvivable

atmospheric probe (assumed to have been initially developed for the Mariner 1971 Mars

mission) with either of the small probes or the medium-sized soft lander. Further, the

dual capsules are required to be identical for both planetary vehicles.
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4.6. 1.2 Selection of Potential Mission Configurations

Given the preceding considerations, five potential mission configurations immediately

suggest themselves, viz., two planetary vehicle configurations in which each planetary

vehicle consists of an orbiter and one of the five basic capsule types. The two planetary

vehicles could be launched either by the same Saturn V, or alternately on separate Saturn V

launch vehicles. This selection of one or two launch vehicles is left as an input to the

decision model to reduce the number of potential mission configurations in the model itself.

Three other configuration alternatives are also conspicuous. These combinations are dual

capsule configurations, in which the planetary vehicle contains both an atmospheric probe

and one of the three simplest capsule configurations previously described. Again, two

planetary vehicles could be flown, employing either one or two Saturn V launch vehicles.

Because of the significance which atmospheric measurements on Mars can have for later

missions, and because the pilot model solutions frequently contained a flyby spacecraft

with a direct entry probe (C1), it was decided to include as a potential mission configuration

for 1971,the Mariner Mars flyby and atmospheric probe combination.

Finally, it is recognized that either cost or technical development difficulties could pre-

clude the availability of the Voyager capsule system for the 1973 mission, and it was

decided to include some configuration alternatives without a capsule. The first and most

obvious of these alternatives was the Saturn V with two Voyager orbiters. Two other

attractive choices employed one or two Saturn IB launch vehicles (in combination with the

Voyager spacecraft propulsion system) to place the spacecraft on an interplanetary trajec-

tory to Mars. These configurations offer a minimum cost Voyager option for 1973, and

it was elected to include within the decision model the option for either one or two launch

vehicles.

A pseudo-mission configuration not available in the pilot model: viz., the ability to skip

any opportunity and await the outcome of the mission in progress, in order to make subse-

quent decisions with greater knowledge of the Mars environment and existing hardware

capability, is accommodated in the full-scale decision model.
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Finally, it is recognized that the project shouldnot be required to continue flying Voyager

missions at every opportunity if the expectedprofit of additional missions is low. Hence,

at every decision node, there is the option to terminate the program following the flight of

the configuration then under construction.

The resulting number of potential mission configurations is fourteen. To limit the decision

tree even further, additional restrictions are defined. The Mariner Mars 1971 configura-

tion is permitted only in 1971. The three noncapsule configurations are permitted only in

1973. No nonsurvivable probes are permitted after 1975, excepting the dual atmospheric

probe and medium lander, which is allowed in 1977. The resulting allowable mission con-

figurations and the years of availability are summarized in Table 4-2.

4.6.2 PROJECT OUTCOMES

In the pilot model, only five project outcomes are modeled, and these are all capsule

outcomes. Orbiter outcomes are not introduced as a variable in the project outcome

structure. Obviously, a much finer distinction among capsule outcomes and consideration

of orbiter outcomes is in order for the full-scale model. Like the configurations, however,

the outcomes had to be limited to keep the number of branches following chance nodes, and

hence the size of the decision tree, within bounds. Several methods are used to reduce the

number of project outcomes to a suitably small number. One is to combine outcomes of low

probability or low value with other outcomes. This follows because the decision tree

operates upon expected value; i.e., the product of probability and value. Hence, whenever

the product of value and probability for an outcome is low, due to low probability or low

value, that outcome can be combined with outcomes of larger expected value with little loss

in accuracy. This criterion is used extensively in limiting outcomes (especially capsule

outcomes) in the decision model.

Another simplification is to assume equivalence between partial success of sophisticated

capsules and full success of less sophisticated capsules. For example, descent television

pictures are considered equivalent whether taken by a large soft lander or by a nonsurviv-

able descent television probe. Again, this rationale was invoked primarily to simplify the

number of capsule outcomes.
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Further simplification is achieved by employing the concept of bonus value for repeated

capsule and orbiter achievements. This is implemented by assigning value for the first

achievement of a mission outcome, e. g., long-term orbital operations, and then assigning a

constant bonus value for successive achievements of the same mission outcome.

4. 6.2.1 Orbiter Outcomes

Within the present Voyager project concept, the orbiter outcomes which exhibit distinctly

different value, either to the orbiter or to the capsule, are:

ao

b.

C.

do

e.

Failure of the orbiter before Mars encounter.

Failure of the orbiter at the time of orbit insertion.

Achievement of Mars orbit, but failure immediately thereafter so as to preclude

orbiter support of the capsule separation and descent maneuver.

Orbit achievement and survival long enough to permit successful capsule separation

and descent, and relay of capsule data.

Orbit achievement, support of capsule descent, and short-term operation of orbital
science.

f. Orbit achievement and survival in orbit for the full duration of the mission plan.

g. Repeated long-term operation in orbit.

First, the seven listed orbiter outcomes were reduced to five by utilizing repeat value to

replace orbiter outcome (g),and combining outcomes (d) and (e) into one outcome. The

combination is justified on the basis that the probability of failure from the time of capsule

descent through the time associated with short-term orbital operation was adjudged to be

low.

Given the resulting five orbiter outcomes, a second iteration reduces the number to four.

This is accomplished by combining outcome (c) with outcomes (d) and (e), again using a

probabilistic argument that having survived cruise and orbit insertion, it would be extremely

unlikely for the spacecraft to fail prior to support of capsule descent.
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The resulting list of orbiter outcomes is as follows:

a° Failure before Mars encounter.

b. Failure at the time of orbit insertion.

c. Achievementof Mars orbit, support of capsule separation and descent, and short-
term orbital operation.

d. Orbit achievementand orbital operation for the plannedmission duration.

These four orbiter outcomesare the rows of the project outcome matrix of Table 4.3. It

shouldbe noted that, for the Mariner 1971configuration, complete successof the spacecraft

cannot advancethe outcome state beyond level one, because the spacecraft is not plannedto

be aboutthe planet.

Table 4-3. Project OutcomeMatrix

X

Capsule Outcomes
Orbiter Outcomes

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 Present Achievement: X X X

Flyby

2 Failure at Orbit X X X

Insertion

3 Short-Term Orbital X X X X X X X X X X X X X X

Operation

4 X X X X X X X X X X X X X XLong-Term Orbital

Operation

z Allowable capsule and orbiter outcome combinations

with nominal potential mission configurations

4.6.2.2 Capsule Outcomes

Capsule outcomes are defined by first defining a set of basic capsule achievements, and then

forming outcomes by judiciously recognizing combinations of achievements.
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4. 6.2.2.1 CapsuleAchievements

Figure 4-20 is a capsule functional flow diagram which describes seven basic capsule achieve-

ments, CA1 through CA7. Failure during the entry phase of the capsule mission, denoted by

CA1, is considered important, not because of its value but because of its adverse effect on

the probability of successful entry in future missions.

Return of entry data (CA1} and return of a complete atmospheric profile (CA2) are considered

valuable achievements. The latter implies survival of the capsule, not only through entry

but through descent to the surface of the planet, including such events as deployment of

parachutes and separation of the capsule heat shield, if and as required. Descent television

(CA3), as indicated in Figure 4-20, is modeled to occur with or without an attempt to achieve

soft landing.

Achievement of soft landing, even without meaningful experiments conducted on the surface,

is considered an engineering achievement worthy of recognition by the decision model.

Failure to achieve soft landing (CA4) is also considered important because of its implication

on the probabilities of success of subsequent attempts.

Rounding out the list of capsule achievements are three basic surface experiment achieve-

ments, modeled to reflect the capabilities of the medium lander (CA5}, the biological

laboratory (CA5 and CA7), and the physical laboratory (CA5 and CA6}.

Possible combinations of these capsule achievements, together with the baseline level of

achievement (CA0, no capsule attempt}, still lead to a number of capsule outcomes much

larger than could be permitted in the decision tree. Consequently, it was necessary to

employ the techniques described previously to reduce the number of outcomes to an accept-

able level. Table 4-4 indicates the combinations of capsule achievements which were finally

selected as being representative capsule outcomes.
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4.6. 2.2.2 Formulation of Outcomes

To describe the rationale for the selection of the capsule outcomes of Table 4-4, the under-

lying bases for assigning value to the several capsule achievements of Figure 4-20 must be

considered. First, it is considered that the landed experiments will carry by far the great

bulk of value in the Voyager capsule mission. In other words, determination of the atmos-

pheric and descent television are considered of minor value compared with the surface

experiments from a scientific point of view. However, they are quite important in achieving

a successful soft landing, which is a precursor to the important landed experiments. Hence,

much of the value of early capsule achievements will be derived in nature, since the

accomplishment of the achievement will increase the probability of success in later landed

missions. An oversimplification is that the concern is to reduce three unknowns for h_ture

success: atmospheric properties, surface winds, and surface features.

4.6. 2.2.3 Entry and Descent Outcomes

Referring to Table 4-4, the first outcome beyond the baseline outcome (CO1) is capsule

outcome two (CO2), failure in an attempt at Mars atmospheric entry. As discussed pre-

viously, this outcome is principally of derived value because of its (negative) effect on

subsequent mission probabilities.

The next major capsule outcome (CO3) is to survive the atmospheric entry into Mars and

return data about the atmosphere. This is of scientific interest, although its greater value

lies in ensuring capsule design adequacy for Mars entry. In this aspect, return of even

unmodulated capsule radio carrier following entry is of value, in that it indicates adequate

knowledge of the Mars atmosphere with respect to the capsule entry design. However, it

is unlikely that this result would occur. The entry science instruments will probably be

redundant, and the probability that the capsule could survive entry and not return the data

is low.

The same argument can be extended to the atmospheric profile data, in that a capsule which

survived entry and returned entry data would almost certainly also return the atmospheric

data for which it was designed. Hence, it seemed reasonable to combine both entry and

atmospheric data return into a single capsule outcome (outcome three of Table 4-4).
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Outcome five (CO5) is selected as the return of descent television from a nonsurvivabl?

probe. Descent television is thought to have some assigned value, but, again, its major

value is its influence on future mission success. Descent television can provide sufficiently

high resolution photographs of the Mars surface to ensure that a soft lander Jan be designed

to accommodate the surface features that can reasonably be expected in future missions.

Further, if the capsule contains attitude sensors, then the translation history of the capsule

as it near s'i the surface could provide an indication of surface winds, another important

variable in the design of a soft landing system. Thus, descent television is recognized as a

major factor in the knowledge of the Mars landing environment.

The next major outcomes of significance in the exploration of Mars concern failure in an

attempt to soft land. This outcome was modeled with descent television return (CO6) and

without (CO4). It is assumed that any capsule capable of soft landing must have

achieved entry success and is assumed to have provided, at least by inference, entry and

atmospheric data.

4. 6.2.2.4 Landed Outcomes

Successful soft landing is selected as the first landed outcome. Again, this could be accom-

plished with or without descent television. However, if successful soft landing is accom-

plished, credit is given for the return of descent television, entry and atmospheric data.

The rationale behind the inclusion of descent television value in soft landing recognizes that

such television has three principle components of value:

a. High resolution observation of the surface features, principally as an aid in the
design of future soft landers.

b. A means of obtaining near-surface wind measurements for the same reason.

C. Location of the landing site, by correlation of high altitude descent photographs

with photographs taken from the orbiter.

Substantially all of these values are reasoned to accrue from a successful soft lander,

regardless of the success of the descent television experiment. Television pictures of

surface features, for example, could be obtained from a successful soft lander, albeit over
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a smaller surface area. Near surface winds might possibly be inferred from landing radar

telemetry. The longitude of the lander on the surface could probably be determined from

the timing of occultation of the lander signal (to the orbiter or to earth). Its latitude could

be deduced with good accuracy from the spacecraft geometry and attitude at the time of

capsule separation. Thus, the value of descent television is included in capsule outcome

seven (C07).

Capsule outcomesCO8 through CO14 represent combinations of capsule achievements CA5,

CA6, and CA7, taken one, two, and three at a time. It is assumed that the biological

laboratory could perform roughly half the surface physical experiments of the surface

physical laboratory. Since full physical and biological experiment capability is not modeled

aboard a single capsule, capsule outcomes CO13 and CO14 cannot be attained in a single

mission.

Referring to Table 4-3, combinations of the four orbiter and 14 capsule outcomes result in56

project outcomes. Some of these 56 outcomes are not, however, attainable with the

nominal set of potential mission configurations of Table 4-2. For example, with orbiter

outcome one, only direct entry capsule outcomes can be realized, and since the only direct

entry capsules are the atmospheric probes of dual capsule configurations 12, 13 and 14, the

maximum capsule outcome level is three with orbiter outcome one. A like argument

suffices for orbiter outcome two. Thus, the number of project outcomes is fixed at 34, as

shown in Table 4-3, for the 14 potential mission configurations previously discussed. It

should be noted, however, that if the configuration entry mode option (i°e., direct entry for

larger capsules) is exercised, the pattern and number of allowable project outcomes would

be changed.

4.6.2.3 Assumptions

4.6.2.3.1 Dependence of Mission Events

It is recognized that an important requirement on the decision model is that it correctly

accounts for the dependence of mission events upon preceding events. For example, if a

single launch vehicle launches two planetary vehicles on a Mars trajectory, then the
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outcomes of these separate planetary vehicles are not independent, but are conditioned

upon launchvehicle success. In this example the dependenceis evident, but there are

other cases in which seemingly dependentevents canbe approximated as independent.

reduce the complexity of the decision structure, it is important to recognize as many

situations as possible in which mission eventscanbe considered independentof one

another.

To

A typical case is the separation of two capsules from a single planetary vehicle. Mounted

one above the other, there is a temptation to assume that successful separation of the

lower or second entry vehicle should be conditioned upon having successfully released the

first. In fact, some thought led to the conclusion that this is almost certainly not the case,

and that the separation of these two capsules could be taken as independent events.

Consider two separate cases, as diagrammed in Figure 4-21. In 4-21a both capsules

share a common biobarrier while in Figure 4-21 they are in independent but identical

biobarriers. In both cases the flight sequence is assumed to be that the upper biocarrier

is first separated, followed by the first capsule, followed by the second (or lower half)

biobarrier, and finally separation of the second capsule. Both of these cases are similar,

in that functional redundancy exists because separation of the second biobarrier (or lower

half of the common biobarrier) necessarily releases any unseparated capsule or biobarrier

above so that the lower capsule can be separated. This situation permits the assumption

that dual capsule separations can be taken as independent events. In fact, reliability-

conscious designers would prefer such independence of operation.

By an exactly similar argument, it can be shown that the separation of the first and second

planetary vehicles from the Saturn V launch vehicle can be considered as independent events.

Another question of independence arose in considering the effect of failure to separate a

direct entry capsule prior to attempting Mars orbit. Such a failure would reduce the

propulsive velocity change at Mars orbit insertion, resulting in a different orbit. The
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a. SEPARATIONSEQUENCEOF TWO
CAPSULESIN COMMONBIOBARRIER

4-44

b. SEPARATIONSEQUENCEOF TWO
CAPSULESIN IDENTICAL BIOBARRIERS

Figure 4-21. Dual Capsule Separation Sequences



value of the orbiter is therefore not completely independent of the direct capsule separation

event. However, the nature of the orbital change is that the period of the orbit is increased,

but the periapsis remains about the same. The primary effect is to reduce, over a given

mission lifetime, thenumber of times the spacecraft will be at periapsis, and thereby the

quantity, but not the quality, of the orbital science. This effect is thought relatively minor

enough to approximate orbit insertion as independent of direct entry capsule separation.

4.6.2.3.2 Multiple Successes Within a Mission

Most of the potential mission configurations employ two planetary vehicles per opportunity.

Clearly, either none, one or two of them may succeed in reaching a given project outcome.

The approximation is made that the outcome of the mission is the highest outcome

achieved by a planetary vehicle within the mission, regardless of whether it is achieved by

one or two planetary vehicles. For outcomes to which repeat value is applicable, the

approximation is then made that repeating the outcome in the same mission is of little or

no value, since the nature of the experiments on both planetary vehicles would probably

be identical.

4.6.2.3.3 Last Opportunity

The restriction is placed on the decision structure that no missions could be launched after

the 1981 opportunity. This extra mission, beyond present NASA plans for a Voyager

project from 1973 to 1979, is inserted because the decision structure can skip launch

opportunities to await results from previous missions, thereby yielding four flight (or

less) sequences ending in 1981.

Voyager flights after 1981 are not considered for two reasons. First, it is felt there would

be little interest in Voyager to Mars at dates later than 1981. Second, and more important,

it is felt that the inclusion of events after 1981 would have a small effect upon the decision

of major current interest; i. e., what to fly in 1973.
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4.7 DECISION MODEL

The most striking difference in the full-scale model, when compared to the pilot model, is

its increased detail and corresponding increase in size. Section 4.6 illustrates the many

additional considerations in the full-scale model. In spirit, then, the full-scale model

is a more realistic version of the pilot model, detail having been accepted up to reasonable

limits.

As with the pilot model, the heart of the full-scale model is the decision tree, an explicit

representation of the structure of the Voyager project sequential decision process. While

the pilot model has about 60 nodes in its tree, the full-scale model decision tree has on

the order of 3200 nodes. As a tree grows to this size, it becomes cumbersome and time

consuming to prepare. This is especially true when the intention is to experiment with

the rules by which the tree was generated to evaluate the realism of the decision model.

Accordingly, the full-scale tree was not drawn, but rather, computer programs were

developed to generate the tree and store it in memory according to specified input rules.

These programs are discussed in the following subsections.

4.7.1 STATE VARIABLES

In the pilot model, specification of three state variables (current level of project achieve-

ment, indication of success or failure of the previous mission, and configuration under

construction) completely described a decision node of the pilot tree. For example:

LI', C2 indicates that the current project level of success is level one (return of atmospheric

data), that the previous mission was a failure, and that the configuration under

construction is C2 (orbitalentry, nonsurvivable probe, with atmospheric experiments

and descent television).

One additional state variable specification, the configuration chosen to follow the configura-

tion currently under construction, suffices to define a chance node. For example: LI',

C2, C2 indicates current project success level one, failure of the previous mission,

current construction of a C2, and construction of a second C2 to follow.
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Obviously, a significantly larger set of state variables is neededto describe the full-scale

decision tree. Table 4-5 is a complete listing and description of the full-scale state

variables.

There are six types of parameters associatedwith the full-scale tree: decision nodes,

chancenodes, terminal nodes, costs, values, and probabilities. These six basic

parameters are defined in Table 4-5 in terms of their functional dependenceon the state

variables. For example, a decision nodeis characterized by the form: D, TIME,

PROJECT ORBITAL OUTCOME, PROJECTCAPSULE OUTCOME, CONFIGURATION

UNDERCONSTRUCTION. The D identifies the variable type (decision node), while the

succeedinglist of four state variables completely specifies the decision node. D, 5,

OOLORB, COATM, VOVBL (for example) is interpreted as follows: the D identifies

a decision node; the 5 places the point of time as 1973; OOLORB indicates that the project

orbital outcome is long-term orbital operation; COATM indicates that a nonsurvivable

probe has returned atmospheric data; and VOVBL tells us that the biological laboratory

is the configuration currently under construction.

4.7.2 TREE GENERATION

By defining the state variables and their possible values, part of the information necessary

to generate the decision tree is available. The set of all potential mission configurations,

of all possible project capsule outcomes, and of all possible project orbital outcomes is

specified. Still required, however, are the node succession rules: viz., the outcome

capabilities of the various configuration, which outcomes can succeed which outcomes,

what combinations of orbital and capsule outcomes are possible, which configurations are

available as a function of time, and also explicit specification as to how the project

terminates. The foundation for these rules is included in Section 4. 6.

As previously mentioned, the tree is constructed by means of a computer program which

incorporates the state variables and succession rules. The operation of the tree generation

program can be illustrated by generating a small segment of the tree by hand. Consider

the decision node D, 7, OOORB, COLTV, VOTVSF, and the construction of its successors

4-47



S

,£
I

Z

Z

8

__o

8888 e"

o!
i i

r_

_4 ,4

8

_j

4

_8
_o _._

4-48



and the successors to its successors (Figure 4-22). Although the number of configura-

tions available in decision year seven (1975, the year of the decision for 1977) is four

(see Table 4-2), only VOTVSF and VOVBL, in addition to skipping the opportunity or

stopping the project, may follow VOTVSF. Thus, the initial decision node is succeeded

by the four chance nodes shown in Figure 4-22. The cost associated with choosing the

uppermost alternative, for example, is CO, 7, OOORB, COLTV, VOTVSF, VOVBL.

Consider next the successors to the uppermost chance node. As the VOTVSF configura-

tion is capable of achieving the full range of orbital outcomes, the project orbital outcome

may or may not be advanced from OOORB (short-term operations) to OOLORB (long-term

operations). The only capsule achievement which VOTVSF is capable of adding to the

set already achieved is CA6 (surface physical experiments). Thus, the four successor

nodes shown are the possible combinations of the two orbital outcomes (00ORB and

OOLORB) and the two capsule outcomes {COLTV and COTVSF). However, landed television

(CA5) is a capsule achievement for which there is repeat value, and the VOTVSF configura-

tion has that capability. Hence, each successor node may be reached via one of two

possible paths: one path corresponding to no repeat of the television achievement, the

other implying successful repeat of that achievement.

The logic for generating the successors to the other three chance nodes is quite similar.

For the lower-most chance node, since project termination (VSTOP) was selected, terminal

rather than decision nodes, are reached.

Figure 4-23 is a gross flow diagram of the computer program which generates the decision

tree. The input data that must be supplied to the program include the node succession

rules, specified in the form of seven matrices, and the name of the first node in the tree.

These seven arrays, and their nominal values (as suggested in Section 4.6). are illus-

trated and described in Figures 4-24 through 4-30.
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READ TREE INPUT

DATA SPECIFYING NODE

SUCCESSION RULES

READ NAME OFFIRST NODE

1

1
BY MEANS OF DECISION NODE

SUCCESSOR RULES ENCODED

IN THE CONTIM, CONCON, &

CONCO ARRAYS, GENERATE

ALL SUCCESSORS TO ALL

DECISION NODES IN YEAR N

RECORD ALL NEW NODES SO 1

GENERATED [ALL NEW NODES

ARE IN YEAR (N+I)]

Figure 4-23.

< YES

N tN+ 1 I

BY MEANS OF CHANCE NODE

SUCCESSOR RULES ENCODED IN

THE OROR, OOCO, COCO, &

CAPACH ARRAYS, GENERATE

ALL THE SUCCESSORS TO ALL

CHANCE NODES IN YEAR N

I RECORD ALL NEW NODES

SO GENERATED [ALL NEW

NODES ARE IN YEAR (N÷I)]

Flow Diagram of the Tree Generation Program
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The CONTIM matrix specifies the availability (1 = available, 0 = not available) of mission

configurations for the various opportunities (years 3, 5, 7, 9, 11, and 13 of the program).

Year of Opportunity

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 0 1 0 1 0 1 0 1 0 1 0 1

2 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0

3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

O

b_

_9

O
°,_

5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

8 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

9 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0

10 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0

11 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0

12 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

13 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

14 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0

Figure 4-24. CONTIM Matrix

4-54



The CONCON array summarizes the ground rules imposed upon the model with regard to

the question of which configurations may be succeeded by which configurations. If the

entry in rowR, column C is 1, then configuration R may succeed configuration C. If

the entry is 0, configuration R may not be chosen if configuration C is presently under

construction. Approximately, the CONCON matrix embodies the assumption that a given

configuration will not be succeeded by a less sophisticated configuration. *

O
Z3

L)

0

0
0

Predecessor Configuration

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

2 0 1 1 1 1 1 1 1 1 1 1 1 1 1

3 0 1 0 0 0 0 0 0 0 0 0 0 0 0

4 0 1 1 0 0 0 0 0 0 0 0 0 0 0

5 0 1 1 0 0 0 0 0 0 0 0 0 0 0

6 0 1 1 0 0 0 0 0 0 0 0 0 0 0

7 0 1 1 1 1 1 1 0 0 0 0 1 0 0

8 0 1 1 1 1 1 1 1 0 0 0 1 1 0

9 0 1 1 1 1 1 1 1 1 0 0 1 1 1

10 0 1 1 1 1 1 1 1 1 1 1 1 1 1

11 0 1 1 1 1 1 1 1 1 1 1 1 1 1

12 0 1 1 1 1 1 1 0 0 0 0 1 0 0

13 0 1 1 1 1 1 1 1 0 0 0 1 1 0

14 0 1 1 1 1 1 1 1 1 0 0 1 1 1

* The assumption was made that if a mission opportunity is skipped during or after the

seventh year, then only configurations 10 or 11 may follow the skip. This is effected

by changing column 2 of CONCON to 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0.

Figure 4-25. COI_CON Matrix 4-55



The CONCOmatrix specifies the set of configurations _hich may be flown as a function

of project capsule outcome. Thus, if there is a 1 in row R, column C, then configura-

tion R may be selected whenthe project capsule outcome is C. This matrix is usedto

eliminate configurations which cannotpossibly add anyadditional value to the project.

o

.e.4

o
O

o
°e-4

Proj ect Capsule Outcome

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 0 0 0 0 0 0 0 0 0 0 0

4 1 1 1 0 0 0 0 0 0 0 0 0 0 0

5 1 1 1 0 0 0 0 0 0 0 0 0 0 0

6 1 1 1 0 0 0 0 0 0 0 0 0 0 0

7 1 1 0 0 0 0 0 0 0 0 0 0 0 0

8 1 1 1 0 0 0 0 0 0 O 0 0 0 0

9 1 1 1 1 1 1 1 1 0 0 0 0 0 0

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

12 1 1 0 0 0 0 0 0 0 0 0 0 0 0

13 1 1 0 0 0 0 0 0 0 0 0 0 0 0

14 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Figure 4-26. CONCO Matrix
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The OROR matrixes encode the information as to which orbital outcomes may follow a

given orbital outcome. Thus, ff row R, column C is 1, orbital outcome C is a possible

project orbital outcome after the mission, if the project orbital outcome prior to the

mission was R.

a. OROR 1 (Configurations 4-14)

Resultant

Orbiter Outcome

1 2 3 4

Initial I1 I 1 1 1 1

Orbiter 12 I 0 1 1 1
Outcome,31 0 0 1 1

0 0 0 1

b. OROR 2 (Configuration 3)

Resultant

Orbiter Outcome

1 2 3 4

tialI 11000Orbiter 0 1 0 0

Outcome 0 0 1 0

0 0 0 1

Figure 4-27. OROR Matrix
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The COCOmatrixes encode the information as to which capsule outcomes may follow a given

capsule outcome. Thus, if row R, Column C is 0, capsule outcome C is not a possible pro-

ject capsule outcome after the mission, if the project capsule outcome prior to the mission was

R.

O

©

(9

a. COCO 1 (Configurations 3, 7, 12)

Resultant Capsule Outcome

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

2 0 1 1 0 0 0 0 0 0 0 O 0 0 0

3 0 0 1 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 1 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 1 0 0 0 0 0 0 0 0 0

6 O 0 0 0 0 1 0 0 0 0 0 O 0 0

7 0 0 0 0 0 0 1 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 1 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 1 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 1 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 1 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 1 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 1 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 1

_J

O

_9

b. COCO 2 (Configurations 4-6)

Resultant Capsule Outcome

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0 O 0 0 0 0 0

3 0 0 1 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 1 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 1 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 1 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 1 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 1 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 1 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 1 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 1 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 1 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 1 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 4-28. COCO Matrix (Sheet 1 of 3)
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c. COCO 3 (Configurations 8 and 13)

Resultant Capsule Outcome

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 1 0 1 0 0 0 0 0 0 0 0 0

0 1 1 0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

O

O

rD

d. COCO 4 (Configurations 9 and 14)

Resultant Capsule Outcome

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1 1 1 1 0 1 1 1 0 0 0 0 0 0

0 1 1 1 0 1 1 1 0 0 0 0 0 0

0 0 1 1 0 1 1 1 0 0 0 0 0 0

0 0 0 1 0 1 1 1 0 0 0 0 0 0

0 0 0 0 1 I 1 1 0 0 0 0 0 0

0 0 0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0' 0 0 0 0 0 0 0 0 0 0 1

Figure 4-28. COCO Matrix (Sheet 2 of 3)
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e. COCO 5 (Configuration 10)

Resultant Capsule Outcome

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 0 1 0 1 1 1 1 0 1 0 0 0

0 1 0 1 0 1 1 1 1 0 1 0 0 0

0 0 1 1 0 1 1 1 1 0 1 0 0 0

0 0 0 1 0 1 1 1 1 0 1 0 0 0

0 0 0 0 1 1 1 1 1 0 1 0 0 0

0 0 0 0 0 1 1 1 1 0 1 0 0 0

0 0 0 0 0 0 1 1 1 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1 1 1

0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1

f. COCO 6 (Configuration 11)

Resultant Capsule Outcome

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 0 1 0 1 1 1 0 1 0 1 0 0

0 1 0 1 0 1 1 1 0 1 0 1 0 0

0 0 1 1 0 1 1 1 0 1 0 1 0 0

0 0 0 1 0 1 1 1 0 1 0 1 0 0

0 0 0 0 1 1 1 1 0 1 0 1 0 0

0 0 0 0 0 1 1 1 0 1 0 1 0 0

0 0 0 0 0 0 1 1 0 1 0 1 0 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0 1 0 1 1

0 0 0 0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 4-28. COCO Matrix (Sheet 3 of 3)
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The OOCO matrix specifies the various possible combinations of project orbital outcomes and

project capsule outcomes. Thus, if row R, Column C is 0, it is never possible for the

project outcome state to be orbital outcome R, capsule outcome C. (See Table 4-3).

Orbiter

Outcomes

1

2

3

4

Capsule Outcomes

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 1 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4-29. OOCO Matrix

The CAPACH matrix relates mission configurations to capsule achievements which have

repeat value. Column 1 represonts the first capsule achievement with repeat value; i.e.,

landed television (CA5). Similarly, column 2 represents surface experiments (CA6) and

column 3 represents life detection experiments (CA7). A 1 in row R, column C, indicates

that configuration R is capable of achieving (and therefore repeating) the corresponding

capsule achievement.

(9

Capsule Achievement

5 6 7

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 1 0 0

10 1 1 0

11 1 0 1

12 0 0 0

13 0 0 0

14 1 0 0

Figure 4-30. CAPACH Matrix
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4.8 PROBABILITY MODEL

4.8.1 INTRODUCTION

The primary goal of the probability model is to provide a logical structure within which

probabilities of particular outcomes can be calculated for all possible states of the project.

There is a great amount of information available from the many engineers working on the

project, and the aim of the probability model is to develop a logical language to transform

this information into the numbers that are necessary for the decision analysis.

The first step in the construction of the probability model is to select the set of project

outcomes that will be used to describe the results of a particular mission configuration.

This is described in Section 4.6. Let us momentarily designate the possible outcomes of

a particular mission by (L o, L 1, L 2. .. ). If S denotes a parLicular state of the Voyager

project as described by the state variables introduced in Section 4.7, then the purpose of

the probability model is to provide a logical structure for the calculation of the probability

of each mission outcome conditioned upon having attained the state S. In standard probability

notation, the goal is to calculate p (Li/S) for all i.

An important element in the construction of the probability model is the functional flow

definition of the mission profile for a given mission configuration. Although the functional

flow diagrams are not explicit enough for direct translation into outcome probabilities, they

are indispensable to the precise formulation of the model.

The primary mechanism for representing the probability model is the transition diagram.

An illustration of a transition diagram is shown in Figure 4-31. Each node in the

transition diagram represents a particular state of a mission; a branch from one node to

another represents a transition between the two states. The probability associated with

each branch is the conditional probability that the mission will make the transition to the

successor node, given its arrival at the preceding node. The transition diagram contains

all possible states of the mission, so that the probabilities of all branches leaving each
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Pl P3 P4 P5

I-P 5

(Lo)

P2

(L2)

1-P 2
(L3)

Figure 4-31. Example Transition Diagram

node must sum to unity. Those nodes that have no branches emanating from them represent

the various outcomes of the mission.

To calculate the probability of each of the outcomes conditioned upon each state of the

project, one approach is to construct a transition diagram for each state of the Voyager

project. In practice, however, the most important variable of the state, S (with respect to

probabilities), is the mission configuration that has been selected. Further, since there

are similarities among the various configurations, it is convenient to construct

a single transition diagram and then alter it according to the configuration under.

consideration. This approach is discussed more fully in Subsection 4.8.2.

Once the transition diagram has been constructed and the transition probabilities have been

computed, the calculation of the outcome probabilities P (Lil S) is straightforward. If a path

product is defined as the product of the probabilities associated with a particular path
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through the transition diagram, then probability of a particular outcome is just the sum of

all the path products from the first node to the node associated with that outcome. For

example, in Figure 4-31, the probability of L 1 is just plP3P4(1-P5 ), and the probability of

L 2 is plP3(1-P4) + Pl(1-P3) P2 + (1-Pl)P2" Thus, an algorithm for calculating outcome

probabilities consists of the following three steps:

a.

b.

C.

Set the probability at the first node equal to 1.0.

For each node in the transition diagram and each branch emanating from the node,

multiply the probability associated with the node by the probability associated with

the branch, and add the product to the probability associated with the terminal node

of the branch. For a node that has no branches emanating from it, omit this operation.

Do not carry out this operation for a node until the probability for that node has been

completely calculated. (This latter condition implies that only certain sequences of

calculations are legitimate. However, once a transition diagram has been specified,

it is a simple operation to calculate such a legitimate sequence of calculations. This

sequence can be stored and then used in all subsequent calculations of the outcome

probabilities. )

The probability associated with each of the output nodes is the probability of the
outcome associated with that node.

An important component of the probability model is knowledge of the environment in which

the mission configuration must operate. This can make, for example, the probabilities of

future outcomes dependent upon the outcomes already achieved. It was felt that there were

three major events in the mission profile which could sufficiently improve our knowledge

of environmental factors to require recognition in the probability model:

a.

Do

Orbit Insertion- There is some uncertainty concerning the interaction between the

propulsion system and the rest of the spacecraft (such as the autopilot) in a zero g,

high vacuum space environment during orbit insertion which cannot, probably, be

adequately removed during the ground test program. The first successful orbit

achievement of the spacecraft will enhance confidence that the vehicle has been

correctly designed. Thus, provision is made in the probability model to recognize

this increased confidence following the initial, successful orbit insertion.

Entry - Initial successful entry of a capsule into the Martian atmosphere is recognized

in the probability model such that it can lead to improved probabilities of future

successful entries.
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Co Soft Landing - The third change in future probabilities concerns the attempt to

soft land. This probability can be favorably influenced either by obtaining descent

television pictures or by actually soft landing.

As an example of the effect of environmental factors, consider the environmentally

sensitive mission event represented by a transition from node n-1 to node n of the

transition diagram; i. e., the branch from node n-1 to node n, to which the probability p is

assigned. If W n denotes achievement of the state represented by the nth node,

Pn = p (Wn [ Wn-l)

Assume further that there is a particular environment variable (e) associated with the

transition from node n-1 to node n. Then the equation can be expanded into

Pn = f P(elWn_l) P(Wn]Wn_l'e)de"
all e

i

The probability p (e i Wn-1) represents the probability density function for the environment

parameter (e) conditioned upon the attainment of the (n-1}th node by the mission. The

probability Wn[ Wn_l, e is the probability of a transition from node n-1 to node n conditioned

upon knowledge of the environment parameter e.

To carry out the integration described by the above equation, some approximations are

necessary. Specffical!y, it is assumed that the transition probability W n IWn.1, e is of

the form shown in Figure 4-32. In other words, it is assumed that the mission hardware

associated with the transition from node n-1 to node n is designed for a particular range of

the environment parameter from e I to e 2. If the parameter e does in fact lie within this

interval, then the hardware will be successful with probability Ph; if the environment lies

outside the design region, then the probability of successful operation is zero. For an

approximation of this form, the foregoing expression for the transition probability reduces

to
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p = pePh ,

where

e2
Pe = f P(e ] Wn-1)de

e I

is the probability that e lies within the design interval (el,e2).

This approximation can also be described graphically in the transition diagram; this is

portrayed in Figure 4-33. In Figure 4-33b, the transition from node n-1 to node n is

divided into two separate events. The first corresponds to the environment parameter

lying" within the design interval, and the second even corresponds to the successful operation

of the hardware when the environment lies within the necessary interval.

P(WnlV

P
h

n-l, e)

e e

1 2

e

(n-l) P n

O

(a)

(n-l) Pe Ph (_

(b)

Figure 4-32. Environmental

Probability Assumption.

Figure 4-33. Example of Inclusion of

Environmental Knowledge Confidence

in the Transition Diagram
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4.8.2 MISSION DESCRIPTION AND THE TRANSITION DIAGRAM

4.8.2.1 Introduction

The mission functional flow profile, described in Section 2, was condensed into a functional

flow diagram illustrated in Figure 4-34. The outcomes associated with the Voyager mis-

sion profile can be generally categorized as.-

a. Orbiter outcomes.

b. Direct entry probe outcomes.

c. Orbital entry capsule outcomes.

Each of the major functions of Figure 4-34 is subdivided to that level where probabilities

of successful operation can be generated from available data sources or estimated.

The following notation is used on the flow diagram of Figure 4-34:

P (K):

P(X, Y):

X(Y):

T(Y):

_.(X, Y):

T (K) :

T(N):

The probability, as calculated from input data, is assumed to be constant

for all Voyager mission configurations.

The probability is dependent on both the mission configuration (X) and

year of launch (Y}.

The failure rate of the hardware is a function of launch year.

The time duration of the mission phase is a function of launch year.

The hardware failure rate is a function of both configuration (X) and

year of launch (Y).

The event operating time is a constant.

The time required for long term orbit success increases with launch

year (as soon as one orbiter has had long term success).
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P(Y):

P(X):

The probability is dependent only upon launch year.

The probability is dependent only upon mission configuration.

In the first two mission phases, the Mariner 1971 configuration is modeled differently from

the other configurations, and these changes are denoted on the functional flow diagram by

an asterisk (*).

In the following paragraphs, the probabilistic equations which describe the functions of the

flow diagram, and nominal input data for these functions are discussed in detail.

4.8.2.2 Orbiter Outcomes

Five major functions are involved in the orbiter outcomes:

a. Launch and injection.

b. Separation to Mars encounter.

c. Achieve Mars orbit.

d. Achieve initial orbital operations.

e. Achieve long term orbital operations.

The last two functions are directly correlated with orbital outcomes 3 (00ORB) and

4 (OOLORB}. Failure in the third function leads to outcome 2 (OONORB}.

4.8.2.2.1 Launch and Injection (P 1)

Successful launch and injection (P1) is described by the following equation:
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PAll(X,Y) =

PL(X,Y) =

Po(X,Y) =

PI(X,Y) =

The probability of successfully developing the eonffguration (X) in time

for launch in year (Y).

The probability of successfully launching the configuration (X) within

the year of opportunity (Y) during the launch window.

The probability of successfully completing the launch of the configur-

ation (X) and obtaining a parking orbit within the launch year (I9.

The probability of successfully injecting the configuration (X) onto the

Mars interplanetary trajectory in the year of opportunity (Y).

P L(X, Y), the probability of successfully launching the configuration during the launch

window, depends upon the number of launch vehicles being readied. If only one launch

vehicle is being prepared, the probability is a simple estimate for the vehicle being

launched. If two vehicles are being prepared, then the probability is that of launching at

least one. For Saturn V launches:

where

PAl(Y) = The probability of a launch within the window of one Saturn V launch

vehicle in the year of opportunity.

PA2 (Y) = The probability of one Saturn V launch within the window, given

two launch vehicles are readied in the year.

Ns(X ) = The number of Saturn V vehicles being prepared (i. e., one or two).

For Mariner 1971 (i.e., the Atlas-Centaur):

where

PL(X'Y) = PA9,

PA9 = The probability of one launch within the window, given two launch

vehicles.
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For the two Saturn IB launches:

PL(X, Y)

PL(X, Y)

= PA5 for configuration 4 (VSIB)

= PA6 for configuration 5 (V2SIB)

where

PA5

PA6 =

The probability of a launch within the window of one SIB, given

that only one is being prepared.

The probability of a launch within the window of one SIB, given

two in preparation.

Po(X, Y), the probability of successfully completing the launch and obtaining a parking orbit,

is given by:

Po(X, Y)

Po(X, Y)

Po(X, Y)

= PA3(Y), for the Saturn V.

= qPA10, for the Atlas-Centaur (Mariner 1971).

= PA7, for the Saturn lB.

PI(X, Y), the probability of successful interplanetary trajectory injection, is given by:

P (X,Y)
I

PI(X, Y)

PI(X, Y)

= PA4(Y), for the SIVB stage of the Saturn V.

= _, for the Centaur of Mariner 1971.

= PAS, for the SIB configurations.

4.8.2.2.2 Separation to Mars Encounter (P2)

This phase covers the time period from separation of the planetary vehicle(s) from the

injection booster to Mars encounter. For Voyager missions with direct entry capsules, P2

is given by:
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For those without direct entry capsules,

PB3 =

_V(Y) =

Tv(Y ) =

PMID =

PB5 =

The probability of Voyager planetary vehicle separation from the
launch vehicle.

The equivalent failure rate of the spacecraft system.

The time from separation to direct entry capsule soft landing or
impacting the planet.

The probability of successful performance of midcourse maneuvers.

The probability of a successful orientation for direct entry (or

orbital entry) capsule separation and return to cruise (or orbit)
attitude.

PMID, the probability of completing midcourse maneuvers, is in turn given by:

where

PB4 =

PCM.
1

The probability of a successful Voyager midcourse (or orbit

trim) maneuver.

The probability of havin_ to conduct the ith midcourse, given that

the (i-1)th has been conducted.

For Mariner 19710 the probability of a successful cruise (P2) is given by:

P2 = (PB1) (PB2)
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where

PBI =

PB2 =

The probability of separation of the Mariner planetary vehicle from
the Centaur.

The probability of a successful Mariner cruise from separation to

the time of direct entry capsule planet impact.

4.8.2.2.3 Achieve Mars Orbit (P7)

The orbit achievement phase has important ramifications. Successful performance of orbit

insertion is necessary for both orbital entry capsule outcomes and subsequent orbital out-

comes. The equation which describes successful orbit achievement for all configurations

capable of orbiting (i. e., 4 through 14} is:

where

PB6 =

PB7 =

TOI =

oc(x)

The probability of successfully orienting for the orbit insertion

maneuver and returning to attitude after firing.

The probability of a successful retro firing.

The time from encounter to soft landing or impact of the orbital

entry capsule.

An index which identifies if the mission configuration contains an

orbital entry capsule.

4.8.2.2.4 Initial Orbital Operations (P8}

Initial orbital operations depend upon the success of deploying and operating orbital science

instruments for a limited time in orbit. Mathematically,
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_V (Y) + kS100] TSO
P s = e

where PD1 =

XSI (Y) =

TSO =

The probability of deployment of instruments (e. g., booms, covers,

PSP, etc. ).

The equivalent failure rate of the orbital science hardware.

The time of operation in orbit to obtain value for short term

orbital science.

4.8.2.2.5 Long Term Orbital Operations (P13)

The main difference between this equation and the short term equation is that the time

required to obtain full science value is dependent upon the year of opportunity.

PI3 = e-[kV (Y)

where TLO

P(Y)

The nominal time of operation in orbit to obtain long term orbital

science value.

A multiplier which increases the time an orbiter must survive to

achieve complete science value as a function of year of opportunity.

4.8.2.3 Direct Entry Probe Outcomes

As illustrated in the functional flow of Figure 4-34, seven major functions describe the

the profiles of direct entry probes:

a. Achieve entry trajectory.

b. Survive entry.

c. Relay communications.

d. Return entry data.

e. Survive descent.

f. Return descent data.

g. Return descent television.
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Return of entry or descent data leads to capsule outcome 3 (COATM). Return of descent

television accomplishes outcome 5 (CODTV). Failure to survive entry leads to outcome

2 (CONOEN).

4.8.2.3.1 Achieve Entry Trajectory (P4)

The successful achievement of a direct entry trajectory (for al! configurations which have a

direct entry probe) is given by:

P4 = (PC4) (PC5) e

where PC4 =

PC5 =

kc(X,Y)

%

XCRR (Y)

The probability that the capsule will separate from the planetary

vehicle and orient properly for entry.

The probability that the capsule entry rocket will fire and provide a

AV which is within entry trajectory design limits.

The equivalent failure rate of the capsule support subsystem

equipment.

The time duration from the start of capsule checkout to the start of

atmospheric entry of the direct entry capsule.

The failure rate of the capsule relay radio equipment.

4.8.2.3.2 Survive Entry (P5)

The probability of successful direct entry of the capsule, given the entry environment is

within the design limits of the capsule, is expressed mathematically as:

- [(EK Xc ¢:'x9 ÷ XCRROOI(0.
P5 = e

where EK = The entry environment stress multiplier for capsule support

equipment failure rate.
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The entry time is assumed to be one-tenth of an hour.

4.8.2.3.3 Relay Communications (P6}

The orbiter end of the relay communications link is one of the more important functions in

the successful achievement of capsule outcomes. Without it, the direct entry capsule cannot

achieve any outcomes, regardless of its performance.

Successful relay radio operation in the planetary vehicle from the beginning of capsule

checkout to capsule impact is given by:

P6 =e

where %RR = The failure rate of the orbiter relay radio, given that the orbiter

supplies all support functions.

Entry time is taken as one-tenth of an hour, and descent time as eight-tenths of an hour.

4.8.2.3.4 Return Entry Data (P14)

The return of entry data is dependent upon the successful performance of the entry science

instruments and the playback of the entry recorders. The equation for P14 is given in

terms of these two probabilities.

PI4 = (PC6) (PC7)

where PC6 =

PC7 =

The probability that the entry data recorder works, given a

successful entry.

The probability that entry science works, given a successful entry.
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4.8.2.3.5 Survive Descent (P15)

The survival of the capsule during descent is divided into operation of the capsule subsystems

and operation of capsule relay radio through descent. Descent time is assumed to be eight-

tenths of an hour. From entry survival to impact,

- [_C (X' Y)+ _ORR (Y)] (0.8)
P15 = e

4.8.2.3.6 Return Descent Data (O16)

Return of descent data, given a successfully descending capsule, requires that the atmospheric

sensors deploy and operate. If a parachute is used in the descent phase, then its deployment

must also be considered.

where PC8

PC9

= The probability that atmospheric sensors deploy and operate.

= The probability that the descent parachute successfully deploys.

= An index which indicates if the configuration employs descent parachutes.

4.8.2.3.7 Return Descent Television (020)

The successful return of descent television is modeled as the probability of successfully

deploying and operating the descent television camera and electronics. P15, descent

survival, includes provision for radio return of the television information. For all con-

figurations which carry a direct entry probe, the successful return of descent television is

given by:

P20 = PC10.
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4.8.2.4 Capsule

Fourteen major functions in Figure 4-34 describe the profiles of orbital entering capsules.

Seven of these functions are identical to the seven functions which describe a direct entry

probe. The remairing seven are associated with soft landing and landed operations. The

14 are as follows:

al

b.

C°

d.

e°

f.

g.

h.

i.

j.

k.

1.

m.

n.

Achieve entry trajectory.

Survive entry.

Relay communications.

Return entry data.

Survive descent.

Return descent data.

Return descent television.

Survive soft landing.

Landed subsystem support.

Landed direct data link to earth.

Landed relay data link to earth via spacecraft.

Surface physical experiments.

Surface television and limited experiments.

Surface biological experiments.

4.8.2.4.1 Achieve Entry Trajectory (P10)

The probability of successfully achieving an entry trajectory for the orbital entry capsule

employs the same equation as for the direct entry capsule (P4), except that the time from
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except that the time from capsule checkout to entry of the capsulemay be different.

- [Xc(X, Y)+ XCRR(Y)](TO)
PlO = (PC4) (PC5) e

where T O = The time from capsule checkout until the orbital entry capsule enters the

atmosphere of Mars.

4.8.2.4.2 Survive Entry _11)

The probability of a successful entry of an orbital entry capsule, given that the environment

encountered is within the design limits of the capsule, is given by the same expression used

for a direct entry capsule; t.e.,

Pll = P5.

4.8.2.4.3 Relay Communications (P12)

Here again, the same expression used for the direct entry probe (P6) applies for the orbital

entry capsule, with the exception of the time period to entry.

- AORR(Y ) (TO + 0.1+0.8).
P12 = e

4.8.2.4.4 Return Entry Data (P 17)

The probability of successful return of entry data from an orbital entry capsule is assumed

equal to the same probability for a direct entry capsule:

P17 = P14

4.8.2.4.5 Survive Descent (P18)

The probability of surviving descent for an orbital entry capsule is assumed equal to that

for its direct entry counterpart:

P18 = P15.
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4.8.2.4.6 Return Descent Data (P19}

Again, the assumption that the probability applies to both types of capsules is made:

PI9 = PI6.

4.8.2.4.7 Return Descent Television (P20)

The probability of returning descent television is also assumed independent of the type of

entry capsule.

P20 = PC10.

4.8.2.4.8 Survive Soft Landing (P23)

Given that the landing environment actually encountered is within the design limits of the

lander, the probability that the lander will survive the soft landing is divided into the

landing system operating correctly and the capsule equipment surviving the landing shock:

P23 iPc,,,Y,]iPc,2,Y l

where PCll(Y) = The probability that the soft landing system operates properly.

PC12(Y) = The probability that the capsule equipment survives the landing shock.

4.8.2.4.9 Landed Subsystem Support (P24)

The landed capsule must have operational support from its subsystems throughout the

entire landed phase of the mission. The probability of having subsystem support is given as:

- I_c(X,Y)I TL(Y).
P24 = PCI3(X) e

where PC13(X)

TL(Y)

= The probability of successful deployment of lander support equipment;

e.g., antennas, solar panels, etc.

= The time required to complete a complete set of surface experiments

to the point where full landed science value can be obtained.
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4.8.2.4.10 Landed Direct Data Link to Earth (P22)

If the landed capsule system is designed to establish a direct link to earth, the probability

of it working, given that subsystem support is available, is given by:

1)22 = e ,

where
XCDL = The failure rate of the capsule direct radio link equipment.

4.8.2.4.11 Landed Relay Data Link to Earth via Spacecraft (1)28)

The relay data link operation throughout the period of surface operation is dependent upon

both the orbiter and the capsule relay radio equipment working.

o2 :e

4.8.2.4.12 Surface 1)hysical Experiments (1)25)

The probability of successful deployment of surface physical experiment sensors, collection

of surface samples, and the conduct of surface experiments, given capsule subsystem

support, is given by:

1)25 = (PS1) (PS2) e

where 1)SI = The probability of successful deployment of experiment sensors.

PS2 = The probability of collecting surface samples for the surface laboratory.

ks{Y) = The equivalent failure rate for physical experiment hardware.

4.8.2.4.13 Surface Television and Limited Experiments (1)26)

The probability of successful surface television and related limited experiments is composed

of the following subfunctions:

a. Deployment of sensors.

b. Collection of surface samples.

c. Operation of limited surface experiments.

d. Operation of surface television. 4-83



In relationship to the complex physical experiments of the physical laboratory, the

limited experiments of the television lander are assumed to be about one-half as complex,

and the experiment portiou of P26 is taken as the square root of P25.

wl_ere _Tv{Y} = The failure rate for landed television, given subsystem support.

4.8.2.4.14 Surface Biological Experiments (P27)

The biological experiments are divided into collecting samples and conducting experiments

upon the samples. The probability of successful biological experiments, given capsule

subsystem support is:

P27 = (PS3) e

where PS3 = The probability that biological sensors and sample collection devices

will deploy and operate.
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XB(Y ) = The equivalent failure rate for the science hardware of a landed
biological laboratory.

4.8.2.5 Transition Diagram

In Subsections 4.8.2.2, 4.8.2.3 and 4.8.2.4, the major mission functions of the launch

vehicle, orbiter, direct entry capsule and orbital entry capsule are discussed. This

subsection discusses the general transition diagram which combi-es the probabilities of the

of the major functions to arrive at orbiter and capsule outcome probabilities. While the

nominal set of mission configurations is limited to 14, the transition diagram is generalized

so that alternate mission configurations can also be evaluated, as desired. Figure 4-35 is

the general transition diagram. Each node of the diagram is numbered; and these node

numbers and the successor node numbers are supplied to the computer as basic input

data. The computer then builds the transition tree and calculates the probability of being

at each terminal node with the procedure discussed in Subsection 4.8.1.

Generally, success branches are horizontal and failure branches nonhorizontal. To aid

in following the diagram, a shorthand notation is included on the tree. For example, the

legend OE NR is shorthand for the intermediate node describing a successful orbital entry

capsule without a relay link back to the orbiting spacecraft.

Each column of the transition diagram contains one of three basic parameters:

ao

b°

Mission phase probabilities (e. g., P1, P2, P4, etc. ) describing operation of

configuration hardware and generated according to the formulae of the preceding
subsecti0ns.

Environmental probabilities, discussed in the introduction, and amplified in

succeeding subsections.

c. Configuration switches.
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4.8.2.5.1 Switches

The transition diagram is generalized to accommodatea variety of mission configurations

with the conceptof switches; i. e., the tree brancheswith the words "yes"and "no. " A

probability of unity is assigned to the correct answers to the switch query (and zero to the

incorrect). The 12 switches employed in the transition diagram are defined as follows:

IORB(X):

IENTRY(X):

JENTRY(X):

TVD(X):

TVO(X):

DS L(X) :

OS L(X):

RDIR(X):

RORB (X):

SPE(X):

STVE (X):

BIO(X):

Does this configuration have an orbiter?

Does this configuration have a direct entry capsule?

Does this configuration have an orbital entry capsule ?

Does the direct entry capsule have descent television?

Does the orbital entry capsule have descent television?

Is the direct entry capsule a soft lander?

Is the orbital entry capsule a soft lander?

Does the landed capsule employ a direct communications link to earth?

Does the capsule employ a communications link to earth via the orbiter?

Is the capsule capable of surface physical experiments?

Is the capsule capable of limited physical experiments and surface television?

Is the capsule capable of biological experiments?

4.8.2.5.2 Environmental Probabilities

In addition to the switches and the equipment functions, the transition diagram includes

environmental probabilities dependent upon specific levels of capsule and orbiter outcome.

Four probabilities reflect the entry environment uncertainty, one probability reflects the

soft landing environment, and one probability reflects the orbit insertion environment.

4-89



4.8.2.5.2.1 Direct Entry Environment (P3). The probability that the range of the predicted

direct entry environment associated with the capsule design contains the actual environment

to be encountered depends upon the level of capsule and orbiter outcomes.

For COATM (C03) or higher, it has been assumed that:

P3 =1.0

For COZERO (CO1), and OOZERO through OOORB (OO1 thruugh OO3):

P3 = PC1

where PC1 = Today's estimate of the probability that the range of the predicted direct

entry environment associated with the capsule design contains the actual
environment to be encountered.

For COZERO and CONOEN {CO1 and CO2)

P3 = PC2

where PC2 = Today's estimate of the probability that future direct entry capsules will

be designed to the actual environment to be encountered, given that the
environment has been observed from orbit for several months.

For CONOEN (CO2), and OOZERO through OOORB (OO1 through 003):

P3 = PC3

where PC3 = Today's estimate of the probability that future direct entry capsules will be

designed to the actual environment to be encountered, given a failure to
enter on the last observed mission.
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4.8.2.5.2.2 Orbital Entry Environment

a. Given a Successful Direct Entry From this Planetary Vehicl e (1)9)

The design range on entry environment for an orbital entry capsule is assumed to

be larger than the design range for a direct entry counterpart; hence:

1)9 = 1.0

b. Given an Unsuccessful Direct Entry from this 1)lanetary Vehicle (1)29)

C*

1)29 = 1)C21 (X)

where PC21(X) = Today's estimate that an orbital entry capsule will be success-

ful, given that a direct entry capsule has failed to enter from

this planetary vehicle.

Given No Direct Entry Capsule on this Planetary Vehicle (P30)

The probability that an orbital entry capsule will encounter the expected environ-

ment, given that there is no direct entry capsule, is given by the following equation:

1)30 = (1)3)(1)9) + (1-1)3) (1)29)

4.8.2.5.2.3 Soft Landing Environment (1)21). The probability that the range of the landing

environment associated with the soft lander design contains the actual environment to be

encountered depends upon the level of capsule and orbiter outcome.

For capsule outcomes less than or equal to COATM (CO3), and orbiter outcomes less than

or equal to OONORB (002):

1)21 = PC15

where 1)C15 = Today's estimate of the probability that the first try at soft landing will

encounter an environment within the soft landing design limits.
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For capsule outcomesless thanor equal to COATM (CO3), and OOORB(OO3)or OOLORB(004) :

P21 = PC16

where PC16 = Today's estimate of the probability that the soft landing environment is

within the soft lander design limits, given orbital observation of the

surface for at least a short-term duration.

For COATMS (CO4), and OOORB (003)or OOLORB (004):

P21 = PC17

where PC17 = Today's estimate of the probability that the soft landing environment

is within soft lander design limits, after a failure to soft land and orbital

observation of the surface for at least a short-term duration.

For CODTV (CO5), and all orbiter outcomes:

P21 = PC18

where PC18 = Today's estimate of the probability that the soft landing environment

will be within the design range of the soft lander, given that descent

television of the surface has been obtained.

For CODTVS (CO6), and all orbiter outcomes:

P21 = PC19

where PC19 = The probability that the soft landing environment is within the design

range of the soft lander, given that descent television has been obtained

prior to a soft landing failure.

For capsule outcomes greater than or equal to COLAND (CO7) and all orbiter outcomes:

P21 = PC20
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where PC20 = The probability that the soft landing environment is within the design

range of the soft lander, given a successful soft lander on a previous

mission.

4.8.2.5.2.4 Inference Probability of Orbit Injection (1)31). The probability of a success-

ful orbit injection depends upon the uncertainty surrounding the stresses induced by the

insertion engine firing. For OOORB (OO3)and OOLORB (004), a successful orbit injection

has been achieved, in which case:

P31 = 1.0

For orbiter outcomes OOZERO (OO1,)and OONORB (002):

P31 = PB8

where 1)B8 = Today's estimate of the confidence that the probability of a successful
orbit insertion is the correct value.

4.8.2.6 Nominal Probability Data

Nominal data employed in the probability model was gathered from many sources, including

other probability models, reliability calculations and engineering estimates. Table 4-6

(Sheets i through 6) is a listing of the actual hardware and environmental data employed

in the probability model for nominal exercises. Table 4-7 is a listing of the transition diagram

switch settings as a function of mission configuration.

4.8.3 FINAL GENERATION OF OUTCOME PROBABILITIES

For the transition diagram of Figure 4-35, there are, in general, 56possible outcomes

for each mission(i, e., all possible combinations of the four orbiter outcomes and the 14

capsule outcomes). Each evaluation of the transition tree produces a set of 56 probabilities,

which can be visualized as arranged in a matrix with four rows for the orbiter outcomes and

14 columns for the capsule outcomes. (See Table 4-3. ) Let this matrix of outcome

probabilities be labeled Q, where qij' the (i, j)th element of this matrix, is the joint probability

of the ith orbiter outcome and jth capsule outcome for the particular mission under consideration.

The Q matrix is illustrated in the following diagram:
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1

2
Orbiter

Outcome
3

Capsule Outcome

1 2 3 4 5 6 7 8 9 10 11 12 13 14

qll q12 q13 q14 ..............................

q21 q22 q23 .................................

q31 q32 ....................................

q41 .......................................

Matrix Q applies to the outcomes of a single planetary vehicle. For those mission

configurations that involve two vehicles, it is assumed that the vehicles are identical and

operate independently of one another. The development that follows can be easily extended

to the case in which either of these two assumptions is relaxed. However, both of these

assumptions are consistent with the nominal mission configurations under consideration.

The first step in calculating the mission outcome probabilities with two spacecraft per

mission is to combine the outcome probability matrixes for the two spacecraft into a single

outcome probability matrix for the entire mission. Thus, there are three matrixes similar

to the Q matrix: one for each of the two planetary vehicles, and one for the mission. Since

the two vehicles are identical, we need only calculate an outcome probability matrix for one

of the vehicles.

To construct the mission outcome probability matrix, it is assumed that the mission

outcome is the maximum of the two vehicle outcomes. That is, ff the first vehicle achieves

orbiter outcome i 1 and capsule outcome Jl' and the second vehicle achieves orbiter outcome

i 2 and capsule outcome J2' then the orbiter outcome for the mission is max (i 1, i2) and the

capsule outcome for the mission is max (Jl' J2 )" In this case the mission outcome probability

matrix (denoted as Q') is calculated by a simple enumeration of all the possible

combinations of vehicle orbiter and capsule outcomes that yield a particular mission orbiter

and capsule outcome. Thus, the probability of mission orbiter outcome i and mission

capsule outcome j is
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i j 2 j-1 i-1

q_j = 2qij 2; Z qk£-qij +2 _ qik Z; q£j
k=l ,5=1 k=l ,5::1

The last term above must be omitted if either i or j is equal to one.

In practice, however, there are situations in which the orbiter and capsule outcomes for

the mission are not such a simple function of the vehicle orbiter and capsule outcomes.

Assume, for example, that if one of the planetary vehicles achieves capsule outcome j,

and the other achieves capsule outcome k, then the mission capsule outcome is m rather

than max (j, k). If the rule for combining orbital outcomes remains unchanged, then the

following expression must be subtracted from the value of q_ above:
l, max(j, k)

i i

2qij _ q_,k + _ - "_=1 2qik _=1 q_j 2qtj qik

This quantity must also be added to the previously calculated value for q' Thisi,m"

alteration to the mission outcome probabilities must be carried out for each orbiter out-

come. It is assumed that j is not equal to k; Thus_ if so, the correction factor must be divided

by two.

This technique is used to calculate the mission outcome probability matrixes for those

mission configurations that involve two planetary vehicles. Of all possible outcome

combinations, there are 10 special cases of this type. These are listed in Table 4-8.
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Table 4-8. Special Combinations of Outcomes from Two Planetary Vehicles

Capsule Outcomes Mission Outcome

4, 5 6

8, 9 11

8, 10 12

9, 10 13

10, 11 14

9, 12 14

8, 13 14

11, 12 14

11, 13 14

12, 13 14



A second consideration with two planetary vehicles concerns those transitions in the

transition diagram that are not independent between the vehicles. The most common

examples of these dependencies are the various environmental probabilities in the transition

diagram. For example, ff the entry environment is such that a successful direct capsule

entry is achieved from one spacecraft, then capsules from the second spacecraft will also

experience a favorable environment for both orbital and direct entry.

Another such dependency is the launching of two planetary vehicles by a single booster.

this case, the launch and injection probability in the transition diagram is obviously not

independent between the two planetary vehicles.

In

To illustrate the handling of this problem, consider the case where there is only a sir_le

transition in the transition diagram that involves a dependency between the two planetary

vehicles. The probability associated with this dependent transition is p. In this case, the

mission outcome probability matrix can be calculated by the following procedure:

ao

Do

co

do

Set the probability associated with the dependent transition in the transition

diagram equal to zero and then calculate the planetary vehicle outcome probability

matrix Q.

Calculate the mission outcome probability matrix Q' from the above matrix

using the logic summarized in Table 4-8.

Repeat steps (a) and (b) with the probability of the dependent transition set equal
to one.

Multiply the mission outcome probability matrix Q, in step (b) by (l-p), multiply

the mission outcome probability matrix in step (c) by p, and add the two matrixes

together. The sum is the desired mission outcome probability matrix for the

two-vehicle configuration.

To extend this procedure to the situation in which there are many dependent transitions in

the transition diagram, as is the case for the probability model, all possible combinations

4of dependent transitions must be listed. A planetary vehicle outcome probability matrix (Q) and a

:mission outcome probability matrix (Q,) are then calculated for each possible combination of
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dependent transitions. Each mission outcome probability matrix is then multiplied by the

actual probability of that particular combination of dependent transitions, and the sum of

these matrixes is then the desired mission outcome probability matrix for the two vehicle

configurations. The application of this procedure to the transition diagram of Figure 4-35

is summarized in Table 4-9.

Table 4-9. Combinations of Dependent Probabilities

Values of Transition Probabilities

Used in Calculating Vehicle

Outcome Probability Matrix Q
P9

P29

P31 P21 P3 P30

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Probability of the Particular Sequence

(i. e., multiplier of the mission

matrix Q').

(l-P31) (l-P21) (i-P3) (I-P29)

(1-P31) (l-P21) (l-P3) P29

(i-P31) (l-P21) P3 (l-P9)

(l-P31) (I-P21) P3 P9

(l-P31) P21 (l-P3) (i-P29)

(l-P31) P21 (l-P3) P29

(l-P31) P21 P3 (l-P9)

(l-P31) P21 P3 P9

P31 (I-P21) (l-P3) (1-P29)

P31 (l-P21) (l-P3) P29

P31 (l-P21) P3 (l-P9)

P31 (l-P21) P3 P9

P31 P21 (l-P3) (i-P29)

P31 P21 (l-P3) P29

P31 P21 P3 (l-P9)

P31 P21 P3 P9

For the two planetary vehicle per booster configurations, the 16 above combinations

are calculated with Pl set at one, and each of the probabilities in the right hand column is

multiplied by Pl. A second calculation is made with P1 set to zero, and the resulting

matrix is multiplied by (1-Pl).
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4.9 COST MODEL

4.9.1 APPROACH

The method for determining the cost associated with each decision node involves the

estimation of a nominal or baseline cost for the mission configuration being considered;

this nominal cost is then modified in accordance with the state of the project existing at

the time of the decision. The project states of concern to the cost model are represented

by the following four state variables:

a. Year of launch opportunity.

b. Outcome of previous orbiter flight.

c. Outcome of previous capsule flight.

d. Mission configuration in process at the time of decision regarding the next

configuration to be processed.

Nominal costs for each of the mission configurations are estimated by dividing the cost

into six categories:

a. Capsule.

b. Orbiter.

c. Management.

d. Integration and operations.

e. Launch vehicle.

f. Science payload instrumentation.

Modifying factors to these nominal costs, I 1 through I4, are estimated for each possible

state of the above four variables, respectively.

In order to limit the amount of detail in the cost model, the following ground rules and

assumptions are followed:
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a0

Do

c.

do

e.

fo

go

h.

ie

The decision to skip a Mars launch opportunity involves some cost commitment to

carry the project over until the next decision.

The decision to discontinue the Voyager program involves only run-out costs on

the configuration already in process; i. e., no new cost commitments.

The decision at a decision node selects the configuration to be launched approxi-

mately four years later and the cost attached to it; it does not affect the cost of the

configuration which is in process for launch approximately two years later.

The outcomes from configurations selected approximately four years earlier are

available and may affect the cost attached to the decision. These outcomes are

represented by state variable modifiers 12 and 13.

The configuration in process, which will be launched about two years after the

decision, is known and can affect the cost attached to the decision, as this con-

figuration is in an advanced developmental stage at the time of the decision. This

effect is represented by state variable modifier 14.

The year of launch for the configuration being considered affects its cost, due to

advancements and increased knowledge. This is represented by I 1.

No project state variables other than the above four are significant in estimating
the cost attached to the decision.

The values of state variable modifiers 11, 12, and 13 are independent of the con-
figuration under consideration.

State variable modifier I, representing the effect of the configuration in process,

is dependent on the configuration being considered. Therefore, the values of 14
are estimated separately for each configuration to be considered.

The project cost estimates obtained through the use of this cost model are not based upon

sufficient enough detail to justify their absolute acceptance. They are, however, suitable

for determining the sensitivity of project decisions to cost, and their absolute values are

found to be in general agreement with known Voyager budgetary planning for those config-

uration sequences which have been considered to date for Voyager.

4.9.2 COST EQUATION

The cost equation for processing a Voyager mission configuration for one launch opportunity

contains six terms, with each term subject to modification by the project state variable

modifiers.
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S =C +O +M +T +LV +PL
n n n n n n n

where:

S --Nominal cost of processing a selected Voyager mission configuration,
n

from design through post-launch operations

C
n

O
n

'M
n

= Capsule portion of S
n

= Orbiter portion of S
n

= Program management portion of S
n

T = Flight integration and operations portion of S
n n

LV -- Launch vehicle portion of S
n n

PL = Science payload instrumentation portion of S •
n n

n 9

Nominal costs are then modified in accordance with the state of project as follows:

SM =M C +M 0 +M +MtT n+MIvLV n+MplPLn c n o n n n

where:

SM
n

M
C

M
0

= Total cost of processing a selected Voyager mission configuration, n, as

modified according to the state of the project

= Capsule cost modifier

= 11 12 13 14

= Orbiter cost modifier

= 11 12 13 14

= Flight configuration integration and operations cost modifier

11 12 13 14

Launch vehicle cost modifier

M t

MIv =

= 11 12 13 14
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M
pl

= Scientific payload cost modifier

= I 1 12 13 14.

4.9.3 DEVELOPMENT OF NOMINAL COST DATA

The principal cost elements in processing a Voyager mission configuration are the costs

of the orbiter, capsule, science payload, and launch vehicle. The costs of integration and

program management are less significant.

Previous Voyager studies performed by General Electric for a wide range of spacecraft

and capsule concepts (e. g., NASA Contract NAS-W696; JPL Contract 95D847) provided a

reservoir of program cost information. When plotted as a function of system complexity,

data from these studies generally fall within the band shown in Figure 4-36. The points

indicated in the band were selected as the base for estimating the nominal contractor

orbiter, capsule and science payload costs.

as follows:

Saturn V ._120M

Saturn 1B/Centaur _ 30M

Atlas/Centaur ¢ 12M

Nominal launch vehicle costs were estimated

A list of typical work sheet data used for estimating the nominal cost of one configuration

(VOTVSF} is included as Table 4-10. NASA costs related to the capsule, orbiter,

management, and integration and operations categories were estimated as one-half of the

corresponding contractor costs. Launch vehicles and science payloads were treated as

GFE items, with all of the cost shown under the NASA (GFE) category. Table 4-11 lists

the basic weights and costs associated with the potential mission configurations.

4.9.4 COST MODIFIERS

The modification of nominal costs in accordance with project states is accomplished by

multiplying each nominal cost element by the appropriate cost modifiers. As discussed in

Subsection 4.9.2, each modifier is the product of the state variable modifiers 11 through

14. Estimates of the appropriate values for these modifiers are made for each of the 14

mission configurations.
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Typical cost modifier work sheet data (Table 4-12) is shown for one configuration (VOTVSF).

From the modifier data on this sheet and the nominal cost data of Table 4-10, it is possible

to compute the cost of processing the example configuration (VOTVSF) for any values of the

state variables at a decision node.

A sample cost computation based on these estimated nominal costs and modifier values is

listed below for a Voyager mission sequence from 1973 through 1979:

Yea__.__r Mission Configuration Project States Cost (_ M)

11 12 13 14

1973 9 VOLTV 6 1 1 3 1086

1975 10 VOTVSF 8 1 3 9 968

1977 11 VOVBL 10 3 8 10 877

1979 11 VOVBL 12 4 11 11 691

Sample: Total Project Cost ..... ._3622
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Table 4-11. Configuration Weight and Cost Characteristics

Capsule Spacecraft

Capsule *Payload Spacecraft *Payload Nominal

Configuration We(_t Wei_t V_ht Weight Configuration(lb) Cost ($M)

1. VSTOP

2. VSKIP

3. VMAR

4. VSIB

5. V2SIB

6. VOORB

7. VOATM

8. VODTV

9. VOLTV

10. VOTVSF

11. VOVBL

12. VODATM

13. VODDTV

14. VODLTV

400

4O0

800

2800

4700

4700

4OO

800

2800

100

100

200

250

300

6OO

100

2OO

25O

800

2100

2100

2100

2100

2100

2100

2100

2100

2100

2100

2100

150

400

400

400

400

400

400

400

400

400

400

400

0

55

270

501

618

678

783

855

1086

1305

1440

810

912

1140

*Payload weight includes instrumentation packages only, and excludes related structures

and supporting components, which arc included in the vehicle weight.

The cost equation is programmed to permit the computation of the cost of any configuration

under any state variable condition of interest. Nominal cost data, as suggested in Tables

4-10, 4-11 and 4-12, are employed for most exercises. The program is designed, how-

ever, to facilitate change or updating of any nominal costs or cost modifiers.

4.10 VALUE MODEL

The pilot model results show that the optimum decision policy produced by the decision

tree program is sensitive to the quantitative assignment of values to outcomes, as one

would expect intuitively. Furthermore, when costs are assigned to each possible

configuration, the optimum decision policy is found to be sensitive to the number of dollars

assigned to each value point. These results illustrate the importance of developing a

value model; that is, a rational structure for making the value assignment, by breaking

down value into more fundamental quantities that may be determined more easily and

precisely.

4.10.1 NATURE OF VALUE

The application of logic to the decisions of the Voyager project requires as one of its

fundamental steps the construction of a value function on the possible outcomes of the

project. That is, we must construct a scale of values that specifies the preferences of

the decision maker for one outcome as opposed to another. We can think of the problem as

analogous to the one we face if we have someone buy a car for us: we must tell him what

features of a car are important to us and to what extent. How do we value performance

relative to comfort, appearance relative to economy of operation, etc. ?
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Table 4-12,. Typical Cost Modifier Work Sheet Data

Table of Cost Modifiers (Configuration: 10-VOTVSF)

Modifier Variable States Capsule Orbiter

I 1 Year of
Opportunity

12 Orbiter
Outcome

13 Capsule
Outcome

14 Configuration
in Process

4

6

8

10

12

14

1

2

3

4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

2

3

4

5

6

7 or 12

8 or 13

9 or 14

10

11

I
1971

1973

1975

1977

1979

1981

OOZERO

OONORB

OOORB

OOLORB

COZERO

CONOEN

COATM

COATMS

CODTV

C ODTVS

COLAND

COLTV

COSURF

COBIOL

COTVS F

COBITV

COBISF

COALEX

VSKIP

VMAR

VSIB

V2SIB
VOORB

VOATM OR VODATM

VODTV OR VODDTV

VOLTV OR VODLTV

VOTVS F

VOVBL

1.00

1.00

0.95

0.93

0.91

0.90

.

i.

i.

i.

.

1.

0.

1.

0.

1.

0.

0.

0.

0.

0.

0.

0.

0.

00

00

00

00

Nominal Costs ($M) for Configuration

Total Nominal Cost ($M) for Configuration

00

20

90

30

85

20

80

75

75

70

70

70

70

70

1.00

1.00

1.00

1.00

1.00

0.95

0.90

0.85

0.70

0.70

507

Mgt. I&O LV PL

1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00

0.95 0.95 0.95 0.95 0.95

0.93 0.93 0.93 0.93 0.93

0.91 0.91 0.91 0.91 0.91

0.90 0.90 0.90 0.90 0.90

1.00 1.00 1.00 1.00 1.00

1.30 1.00 1.00 1.00 1.00

0.75 1.00 1.00 1.00 1.00

0.70 1.00 i:.00 1.00 1.00
1.00 1.00 1.00 1.O0 1.00

1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 0.95

1.00 1.00 1.00 1.00 0.90

1.00 1.00 1.00 1.00 0.80

1.00 1.00 1.00 1.00 0.80

1.00 1.00 1.00 1.00 0.80

1.00 1.00 1.00 1.00 0.80

1.00 1.00 1.00 1.00 0.80

1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00

0.80 1.00 1.00 1.00 '0.95

0.80 1.00 1.00 1.000.95

0.75 1.00 1.00 0.80 0.95

0.75 1.00 1.00 0.80 0.90

0.75 1.00 1.00 0.80 0.75

0.75 1.00 1.00 0.80 0.75

0.70 1.00 1.00 0.80 0.70

0.70 1.00 1.00 0.80 0.70

378 45 45 120 210

1,305
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The need for specifying the value function grows out of the desire to utilizethe potentialof

analytical and logicalmethods to extend and improve our more intuitiveconcepts, and the

desire to delegate many of the detailed decisions to lower-level decision-makers. Analytical

and logical methods allow us to take direct account of many more factors, including the

dimension of uncertainty, in order to make better decisions. However, to obtain maximum

benefit from these methods, we must be willing to specify a value function, especially in a

complex sequential decision process such as the Voyager project.

4.10.2 DERIVED AND ASSIGNED VALUES

In constructing the value function, careful distinction must be drawn between derived and

assigned components of value. The assigned component of value is the one we obtain as an

explicit benefit of the project. For example, conducting a life experiment on Mars has an

assigned scientific value that is very high. Similarly, placing a spacecraft in orbit around

Mars has an assigned value as an engineering accomplishment. However, placing the

spacecraft in orbit also has a derived value because of its importance in achieving later

assigned values, like the conduction of life experiments. A derived value component is

therefore one that accrues to an accomplishment because of its contribution to achieving

future assigned values.

If the project is terminated at some date, it will be credited with all of the assigned values

it had achieved prior to that date, but not with any derived values that had not been realized

in assigned form. The assigned values could only be realized by continuation of the project.

The same accomplishment may have both assigned and derived values. The assigned values

are determined by factors outside the project; the derived values stem from the assigned

values and the probabilistic structure of the problem.

4. i0.3 DIRECT AND INDIRECT VALUES

We can think of the assigned value function in terms of both direct and indirect contributions.

The direct values of the Voyager project arise from the various kinds of knowledge that the

project will produce; for example, visual records of Mars, significantdata on both the

biological and physical environment, engineering capability, and operational experience.
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From these direct contributions we as a nation derive indirect contributions such as national

prestige, favorable world opinion, etc. The existence of the indirect components can be

demonstrated by observing that if a race of galactic explorers were to offer us solid infor-

mation of the type we have listed under direct contributions (such as a Martian atlas, a guide

to the Martian flora and fauna, etc. ), the price we would offer would probably be less than

the cost of the Voyager project. Part of the satisfaction comes from having done it our-

selves, and the value function must include this characteristic of the project.

4.10.4 CONSTRUCTION OF A VALUE SCALE

The first step in constructing the value function is to establish an ordinal scale of values that

states for each pair of outcomes the outcome that we prefer. The next step is the construc-

tion of a cardinal scale that allows us to compare the strength of preference. One way to

develop such a scale is to assign points to the different outcomes and adjust values until

decision makers are satisfied with the results. The final step is the construction of an

absolute dollar scale that interprets points directly in terms of dollar benefits. The ordinal

and cardinal point scales can be established by intuitive comparisons within the project; the

absolute dollar scale requires the comparison of the Voyager project with other space

projects.

We can illustrate the use of cardinal and absolute value scales by returning to the car

purchase example of Subsection 4.10.1. We could tell our agent, who will buy the car for

us, the dollar value we assign to each component of a car's value. We might say, for

example, that given our use characteristics, a car that runs 18 miles to a gallon of gas is

worth $4(_ a year more to us than a car that runs only 15 miles, and that foam rubber seats

are worth $50 more to us than ordinary seats. When we had similarly specified the dollar

value of all possible features, including those whose values might not be additive, then our

agent would be able to go into the market place, determine the value and price of every

offered car and return with the most profitable car for us (which might, of course, be no

car at all). Notice in following this philosophy that we do not care if, in fact, there are

any cars for sale that have all or any part of the features that we have valued. The

establishment of the value function depends remotely, if at all, on the spectrum of cars

available.
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The point value (cardinal) approach is similar except that we assign points to each of the

components of value, individually and jointly. Then we would fix a purchase budget for

our agent and send him out to find the best car (highest points) within that budget. Of

course, we might be very sorry if we found out that he could have purchased a much

better car for a little more money, or if he paid very dearly for the last few points he

obtained. However, since we can often convert point value scales to absolute dollar

value scales by assigning a dollar value to each point, the essential difference in the

two schemes lies in whether we want to find the most profitable course of action with

or without budgetary constraints.

It should be emphasized that the main role of the value function is to serve as a frame-

work for discussion of preferences. The value function encodes preferences consistently;

it does not assign them. Consequently, the decision-maker can insert alternative value

specifications to determine the sensitivity of decisions to changes in the value function.

The process of assigning the value is naturally an iterative one, with components of

value being added and eliminated as understanding of the problem grows.

4.10.5 VALUE TREE

To aid in constructing the value function, the problem can be visualized as one of evaluat-

ing a value tree like that shown in Figure 4-37. This tree is drawn by considering first

the major assigned components of value, both direct and indirect, then the subcategories

of each type identified in more and more detail until no further distinction is necessary.

Position is specified in the tree by a vector x; thus the node x = 3, 2 corresponds to the

node attained by following the third branch at the first node and the second branch at the

second node. The originating node is followed by three branches that represent three

major components of value: scientific benefit, technological benefit, and political bene-

fit. At the node x = 1, scientific benefit is divided into four types. At the node x = 2,

technological benefit is divided between space and nonspace. Space related benefit is

then further categorized. The process may be carried on as far as we like.
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POINT VALUE

_ NORMALIZED POINT VALUE

G NODE NUMBER

EQUIPMENT

EQUIPMENT

Figure 4-37. Partially Completed Value Tree



The value function at any node x is defined as v(x). In the tree structure, the value of any

node is the sum of the values of its successor nodes,

v_xI,_2,...,Xn) = _ v_xI,x2,...,xn,Xn+1).

X
n+l

To illustrate the assignment of value in the tree, consider the following node values as

nominally representative of the NASA/OSSA value preference: *

V(l, i) = 50

V(2, i) = 16

V(2, 2, 1,1) = 4

V(2, 2, 2, 1) = 18

V(3, I) = 15

V(1,2) = 28 V(1,3) = 20

V(2,2,1,2) = 36

V(2,2,2,2,) = 6

V(3, 2) = 5

V(1,4) = 2

These figures are indicated within the boxes on the value tree and imply a scientific

knowledge value of V(1) = V(1,1) + V(1,2) + V(1,3) + V(1,4) = 100, apolitical benefit

value of V(3)= V(3,1) + V(3,2) = 20, etc.

From these point assignments, Mars meteorological science, for example, is judged to

be worth 10 times as much as interplanetary science, and U.S. public opinion is valued

three times as highly as world opinion.

Point values can be interpreted more readily if we place them in a normalized scale by

dividing each by the sum of all. Thus, a normalized value function v*(x) is defined as

1
v*(x) = - v (x).

v

*No NASA/OSSA or J-PL endorsement of these values is intended to be conveyed here.
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The normalized value function for eachnodeappears in ovals in Figure 4-37 and is the

fraction of total value attributable to that node. This biological knowledgeaccounts for

25percent of total value, while U.S. public favor earns only 7.5 percent of total value.

The complete value tree allows us to assign values to anyproposed project. If a project

is certain to achieve some of the total values, then it would be credited with those values.

If it has a probability less thanone of achieving some total value, then it is credited with

its expectedcontribution. The evaluation of projects can beperformed at any vertical

cross-section of the tree. If the cross-section is taken near the left-hand end of the tree,

the value computationwill be rather approximate. As the componentsof value are more

carefully broken downand the evaluation is performed to the right of the tree, the value

computation becomesmore precise. Of course, noplan for the project is expectedto

have a perfect value score.

4.10.6 COMPLETING THE VALUE TREE

Up to this point, the value tree has not beendevelopedto the point where it can supply

the kinds of values demandedby the decision tree. The decision tree wants to know

answers to questions like: "What is it worth if a mission configuration takes the project

from capsule outcomeCOLTV to capsule outcome COTVSF, and in the process repeats

orbiter outcomeOOLORB7" To answer sucha question, we must obviously know the value

of achieving eachof the orbital outcomesand each of the capsule achievements, and of

repeating some of them.

In general, eachcapsule achievement or orbital outcome contributes value in several of

the categories represented by the tips of the partially completed value tree of Figure 4-37.

On the other hand, the contributions of all the orbital outcomes and capsule achievements

to biological knowledge, for example, must sum to 25 percent. Thus, each value tree

final node can be broken down into the contributions made by the full set of orbital out-

comes and capsule achievements to that category.
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Figure 4-38 illustrates the final structure that is tacked onto each tip of the value

tree of Figure 4-37 to complete it in this manner. The tip structures for each of the tips

of Figure 4-37, with normal weightings, are shown in Figures 4-39 through 4-49.

Thus, to calculate the total value of CA3, for example, we need only sum the biological

value of CA3, the planetological value of CA3, the meteorological value of CA3, etc.

In the case of capsule achievements, like CA5, which have repeat value, the node represent-

ing that achievement is further sub-divided between the value of the initial attainment and

the sum of all repeat values (assuming a maximum number of possible repeats). Then,

by taking 1/n max (where nmax is the maximum possible number of repeats) of the node

representing the value of all n repeats, a node representing the value of one repeat
'max

is generated.

4.10.7 CONCLUSION

In developing this model, we found it difficult to look at the entire project, and by intui-

tion or judgement assign values to each outcome. In order to encode our feeling

about the outcomes, we described the value assignment process with the value tree and, by

assigning values to each node in the tree, deduced the value of any project outcome. The

value tree method of value assignment proved to be useful in assessing the value function

of the Voyager project.

Our main goal was to provide the decision-maker with a consistent and convenient way to

encode his preferences. Only when this step was accomplished could the mission config-

uration question be settled by logical means.

4.11, THE SPAN SYSTEM

The decision tree and the three submodels for probabilities, values and costs were all

programmed within the framework of a program system called SPAN (Space Programs

ANalysis). This section describes this versatile program system.
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4.11.1 INTRODUCTION

SPAN is a system of computer programs designed to operate in a General Electric 635

computer and written in the Fortran IV language. Its objectives are to accept information

descriptive of the decision model in quasi-English format on punched cards, to produce the

model so described, to analyze the model according to predetermined methods, and to yield

the results of these analyses in hard copy form.

There are four distinct phases to SPAN operation, as depicted in Figure 4-50. These are:

Phase h

Phase II:

Phase III:

Phase IV:

Decision Model Structure Data

Input and Conversion

Decision Model Parametric Data

Input and Conversion

Decision Model Generation

Decision Model Analyses and Output.

4.11.2 SPAN SYSTEM SUMMARY DESCRIPTION

Control of overall SPAN system operation is governed by a single control program resident

in the computer memory (see Figure 4-50). This program accepts user control specifications

in punched card form to guide it in accomplishing the desired tasks. Among these specific-

ations is the ability to command complete or partial system operation, according to the

user's requirements. In the former case, phases one through four are applied in order,

and the system operates from start to finish for the user. In the latter case, system

operation may be initiated and terminated at any phase, with means for coupling this

incomplete operation with prior or subsequent runs.

Phase I (Figure 4-52) produces the decision tree structure in tabular form from user

specifications. This structure serves as the basis for all subsequent modeling activity.

Phase II (Figure 4-52) accepts further information from the user and complements the

decision model structure of Phase I with parameters of cost, value and probability.
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Phase HI (Figure 4-53) generates the full decision model by merging the model structure

created in Phase I and the parametric information from Phase If.

In Phase IV (Figure 4-54), the user designates the analyses to be performed on the decision

model generated in Phase HI. The analyses are performed, and the results are produced in

hard copy form.

Conclusion of SPAN operation provides the user with a magnetic tape upon which the

decision model undergoing analysis is recorded for possible subsequent use.

4. II. 3 DATA STRUCTURE FOR DECISION MODELING AND ANALYSIS

The decision tree concept discussed in Sections 4.5 and 4.7 is automated by the SPAN system.

The completed decision model is represented in tabular form, with each entry corresponding

to one of three node types: decision node, chance node or terminal node.

Creation of the decision model table commences in Phase I where the nodal structure of the

tree is generated from input specifications. Each table entry at this point describes the

type of node (decision, chance, terminal), its identification or name, and subentries

identifying which other nodes structurally succeed it. In Phases H and HI, parametric

information on cost, value, and probability is correlated with the links (or branches) between

the node (as represented by the entry) and each of its successor nodes (as represented by

subentries).

Generation of parameters occurs during Phase II operations by operating on cost, value and

probability input data. The decision model structure created during Phase I is referenced

to generate separate parameter tables for cost, value, and probability, and only those

parameters which are required by the decision tree are generated. In Phase IH, the decision

model table is completed by linking entries (nodes) to their subentries (successor nodes) by

costs, values, and probabilities from the parameter table.

Figure 4-55, illustrates the correlation between the graphic and tabular representation of a

node in the decision model structure.
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TA BULAR

DECISION MODEL TABLE

ENTRY DESCRIBING NODE

i AND INDICATING FIVE

SUCCESSOR NODES.

NODE i INFORMATION

SUCCESSOR NODE j

SUCCESSOR NODE k

SUCCESSOR NODE I

SUCCESSOR NODE m

SUCCESSOR NODE n

GRA PHIC

EACH SUBENTRY TO THIS

DECISION MODE L TA BLE

ENTRY INDICATES THE

LOCATION OF SEPARATE

DECISION MODEL TABLE

ENTRIES FOR EACH OF

THE SUCCESSOR NODES.

EACH SUBENTRY ALSO

CONTAINS REFERENCE TO

ONE OR TWO PARAMETER
TABLE ENTRIES.

Figure 4-55. Correlation Between Graphic and Tabular Nodal Representations

Each node in the decision model table has a name, and these node names are carried in

another SPAN system table (the name table). Each decision model table entry references

the name table entry where the name is stored. In like fashion, the names of each cost,

value, and probability amount in the parameter tables are also stored in a name table. Access tc

these names is required by some Phase IV analysis routines where the nodes need to be

cited in a manner recognizable to the user.

4.11.4 SPAN SYSTEM CONTROL (CNTRL1)

Upon initiation of SPAN system operation, program CNTRL1 gains immediate control and,

guided by user specifications on punched cards, governs the follo_ing tasks:

ao Selection of the initial phase of operation. CNTRL1 yields control to the initial phase

of operation specified or to the next phase as control is passed from one phase to
the next.
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DQ

Co

Arranging for information on magnetic tape to be loaded into the computer when

system operation begins at other than Phase I.

Arranging for information to be recorded on magnetic tape (for subsequent use)

when system operation concludes at other than Phase IV.

d. Arranging for optional printing of intermediate results as specified.

e. Regaining control from the concluded operation of Phases, I, II, III, or IV.

4.11.5 PHASE I: MODEL STRUCTURING

4.11.5. 1 TREGEN

When entered from CNTRL 1, TREGEN accepts information from the user describing the

decision tree, as explained in Section 4. 7. This information is printed for proofing purposes

and then converted into contextual identifiers which are grouped by node. Thus, each group

contains the name identifying the node to which the group relates, as many names as are

needed to identify all successors to this node, and the names of the (yet to be computed)

costs, values, and probabilities leading to the successor nodes.

When this naming and grouping has been completed, TREGEN records its output on magnetic

tape for subsequent reference by the INTREE program and yields control to CNTRL1.

4.11.5.2 INTREE

INTREE, upon gaining control from CNTRL1, converts the data produced by TREGEN into a

preliminary version of the decision model table discussed in Section 4.11.3. Entries to the

decision model table are created from each TREGEN nodal group and are cross referenced to

other decision model table entries corresponding to the successor nodes to the main node

of the group. INTREE thus establishes each node and parameter name as an entry in a

separate name table and stores a cross reference index to the name table in lieu of the

name itself.
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At the conclusion of INTREE operation, every node cited in the TREGEN output accounts

for one entry in a preliminary decision model table and one entry in the name table. Similarly

each cost, value, and probability parameter accounts for one entry in the name table.

INTREE then yields control back to CNTRL1.

4.11.6 PHASE II: PARAMETRIC COLLATION

4.11.6.1 INCOST

rNCOST is entered from CNTRL1 if specified by the user during Phase H operation. Using

nominal cost data and cost modifiers (see Section 4. 9), INCOST calculates the mission con-

figuration costs for branches emanating from decision nodes and for terminal nodes, as

listed in the decision model table. The final output of INCOST is a cost parameter table

which contains only those branch cost required by the decision model structure. INCOST

establishes the linkage between each decision model table entry and its cost parameter by

referencing the entry in the parameter name table to the location of the actual dollar cost

in the parameter table. Control reverts to CNTRL1 at the conclusion of INCOST operation.

4.11.6.2 INVALU

As with INCOST, INVALU is entered from CNTRL1 if instructed by the user during Phase II

operation. INVALU accepts as input the value tree structure and actual branch values, as

discussed in Section 4.10, and calculates the values associated with chance and terminal

nodes listed in the decision model table. Final output from INVALU are normalized point

values in the parameter table. At the conclusion of INVALU, control is again returned to

CNTRL1.

4.11.6.3 INPROB

INPROB is also entered from CNTRL1 if called upon by the user to produce the probabilities

required by the chance nodes of the decision model table and store them in the parameter

table. As explained in Section 4.8, inputs to INPROB include a transition diagram, the

environmental and hardware probabilities of Table 4-6_ and the configuration switch settings

of Table 4-7. When concluded, INPROB yields control to CNTRL1.
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4.11.7 PHASEIII: DECISIONMODEL GENERATION(DECMOD)

DECMOD completes the decision model table. When entered from CNTRL1 to initiate

Phase III operation, DECMOD changes the references from the decision model table to the

parameter table to direct linkages, rather than indirect via the name table. The decision

model table and parameter table thus represent the complete decision model. The name

table is, however, retained for use in subsequent Phase IV operation. Upon completion of

Phase III, control reverts again to CNTRL1.

4.11.8 PHASE IV: DECISION MODEL ANALYSIS

4.11.8.1 CNTRL3

When Phase IV is called for by the user, CNTRL1 relinquishes control to the Phase IV

control program, CNTRL3. CNTRL3 examines user specificatiens identifying the particular

analyses to be performed, calls the appropriate analysis programs, and controls each until

analysis is completed. The programs that may be called are:

DECPOL - Decision Policy Generation

DECREG - Decision Policy Region Analysis

DECRAV - Decision Policy Risk Aversion Analysis

DECTPR - Decision Policy Time Profile Analysis

DECTOP - Decision Model Topological Analysis

DECSAV - Saves the Decision Model on Tape

DECRES - Restores the Decision Model from Tape

These programs are described in the following sections. Upon processing the last analysis

program request, CNTRL3 returns control to CNTRL1, which then concludes SPAN system

operation.

4.11.8.2 DECPOL

The heart of the Phase IV analysis routines, DECPOL is entered from CNTRL3 when specified

by the user. Upon gaining control, DECPOL examines the specified operating parameters

and then proceeds into its analytical operations.
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The input to DECPOL is the decisiou model generated as output from Phase HI. DECPOL

analyzes the tree by the roll-back technique explained in Section 4. 5. 5 and determines the

optimum policy for the tree and parameters in hand. After this policy has been determined,

DECPOL prints out all of the nodes or just selected nodes in the decision tree along with

the expected cost, expected value, and net expected value of each.

One variable which plays a key role in the computations for policy determination is the con-

version factor )_ (see Section 4. 5.10), i. e., the dollar value assignment to the entire project.

Variation of h affects the policy and expected value determined by DECPOL. DECPOL also

provides the option to discount cost or value as a function of time.

The DECPOL output may take several forms at the option of the user. One option allows

the printing of all nodes, all reachable nodes, or all reachable decision nodes.

The user may also impress constraints upon the selection of decision node successors by

imposing a fixed policy on selected portions of the decision model. The resultant policy

will not necessarily be optimum, but does permit the analyst to compare selected policies.

A fixed policy output can also be produced by the DECPOL analysis upon request. This

output can subsequently be used in whole or in part as fixed policy input by the user.

Decision policy analysis is required by other Phase IV analysis programs and in this context,

DECPOL is considered a subroutine to these programs. Upon conclusion of policy analysis,

DECPOL returns control to CNTRL3, if it was called upon for an individual operation, or

to that Phase IV program which called it into use as a subroutine.

4.11.8.3 DECREG

DECREG is essentially the full-scale implementation of the policy region search discussed

in Section 4.5.10. It operates when called for by CNTRL3. Basically, it plots the net

expected value (NEV) of the origin node of the decision tree as a function of a selected set of

point values, Xi" The subroutine is given an upper and lower limit for the range of X to be

explored. A typical DECREG output is illustrated in graphical form in Figure 4-56. From
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the curve of Figure 4-56, a dominant policy cost-benefit curve like that of Figure 4-19

may be constructed. NEV

In its operation, DECREG calls upon DECPO]

for repeated operations as a subroutine. By

a search algorithm, the break points (Xi) in

the DECREG curve are determined. At each

of these break points, DECPOL prints out

the policy, i.e., the net expected value,

expected value, expected cost, and selected

nodal information. The DECREG printout

thus consists of several DECPOL printouts

ordered on Xi" This listing can be reordered

on expected cost to produce a listing of

dominant policies as a function of expected

cost (i. e., like Figure 4-19).

I
I I

r i i , !
I I ' I I

?"11 _ _2 ?_ _ul

..L?_

_11 AND kul ARE SPECIFIED LOWER AND

UPPER LIMITS FOR k VARIATION

Figure 4-56. The DECREG Output

4.11.8.4 DECRAV

DECRAV is entered from CNTRL3 when called for by the user. DECRAV is similar to

DECPOL in its methodology, but evaluates the decision model for the optimum policy as a

function of the risk aversion characteristics of the decision maker, rather than on expected

value. A primary input variable to DECRAV is the risk aversion coefficient. Varying

this coefficient permits evaluation of policy sensitivity to risk aversion. Output from

DECRAV is accomplished through DECPOL as a subroutine. Upon conclusion of risk

aversion analyses by DECRAV, control is returned to CNTRL3.

4.11.8.5 DECTPR

DECTPR is also accessed by CNTRL3. DECTPR operates on a prior policy generated by

DECPOL and evaluates it for time profile information. Specifically, DECTPR plots expected

value, expected cost, and net expected value as a function of elapsed project time, and also

provides probability distributions on any of these variables at any point in the project. Output
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from DECTPR is in the form of cumulative and incremental cost and value profiles. Upon

the conclusion of DECTPR, control is returned to CNTRL3.

4.11.8.6 DECTOP

DECTOP performs a topological analysis of the decision model. When called for by CNTRL3,

it provides summary information on the topology of the decision tree, such as the number of

nodes of each type, the number of possible policies, etc. Control is returned to CNTRL3

at the conclusion of DECTOP operation.

4.11.8.7 DECSAV

When entered from CNTRL3, DECSAV places the tabular decision model onto magnetic tape,

and then returns control to CNTRL3. This can be subsequently used to re-establish the-

decision model in the computer through DECRES.

4.11.8.8 DECRES

DECRES complements the DECSAV program. Entered from CNTRL3 upon user request,

DECRES restores from magnetic tape all decision model information placed there by DECSAV.

Once this operation is complete, CNTRL3 regains control.

4.11.9 UTILITY ROUTINES

The SPAN system contains eight subroutines which provide utility functions to more than

one program. These are:

4.11.9.1 STGEN

STGEN is the symbol table generation subroutine. Given a node or parameter name, it creates

an entry in the corresponding name table and returns control with the appropriate name table

index as the return argument.

4.11.9.2 STTLU

The symbol table look-up subroutine, STTLU, given a node name, yields as an output argument

the reference to the corresponding decision model table entry.
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4.11.9.3 ENCODE

ENCODE is the name encoding subroutine. It converts any specified name into the binary

identifier used within the computer, yielding this as its return argument.

4.11.9.4 DECODE

DECODE, the name decoding subroutine, converts any binary identifier to an alphabetic or

numeric (symbolic) name yielded as a return argument.

4.11.9.5 NODADR

The node addressing subroutine, NODADR, yields decision model table entry locations in a

predetermined sequence for evaluation.

4.11.9.6 RDTAPE

This subroutine loads into computer memory decision model information previously stored

on magnetic tape.

4.11.9.7 WRTAPE

This subroutine places decision model information onto magnetic tape for subsequent use

by the SPAN system.

4.11.9.8 DECPRF

This subroutine yields a proof listing of the decision model table.
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4.12 RESULTS

The principle objective of this effort was to develop a useful technique for the selection of

Voyager mission configurations and sequences. Following the pilot phase (Section 4.5), a

more full-scale modeling effort was undertaken, the results of which are described in Sections

4.6 through 4.10. The full-scale model was then embodied in a set of computer programs

called the SPAN system (Section 4.11). Discussed in this section are the results of a few,

initial exercises of the SPAN system. Review of these results has not only provided insight

into the operationof the model and some of the dominant factors in configuration selection,

but has emphasized the need for further exhaustive exercise of the models to recommend a

project strategy with confidence. In this sense, the results presented here are meant to be

illustrative, rather than comprehensive and conclusive.

To assist in the interpretation of the results, a reference glossary of configuration and

outcome codes is listed on the following page.

4.12.1 SUBMODEL RESULTS

The basic philosophy and structure of the probability, cost, and value submodels is discussed

in Sections 4.8, 4.9, and 4.10, respectively. Nominal sets of input data for each of the sub-

models were compiled from several sources. The outputs of the three submodels comprise

the costs, values, and probabilities required as basic input by the decision tree. Thus, the

submodel inputs, as transformed by the submodel structures, produce the decision tree input.

This subsection describes submodel output as a function of input. For each submodel, the

output resulting from the nominal set of input data is illustrated. The input data is also

varied to observe the sensitivity of submodel output (i. e., decision model input} to submodel

input.

4.12.1.1 The Value Model

4.12.1.1.1 Nominal Data

Figure 4-57 is an actual computer printout sheet that summarizes the value submodel input

for the nominal set of input data. The value tree drawn by the computer to display the input
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Glossary of Configuration and Outcome Codes

Configurations

1 VSTOP

2 VSKIP

3 VMAR

4 VSIB

5 V2SIB

6 VORB

7* VOATM

8* VODTV

9* VOLTV

10" VOTVSF

11 * VOVB L

12"* VODATM

13"* VODDTV

14"* VODLTV

*Single SV with two planetary

**Single SV with two planetary

Discontinue the project

Skip the next opportunity

Mariner '71

Single Voyager orbiter with single SIB

Two Voyager Orbiters with two SIB's

Two Voyager orbiters with single SV

Nonsurvivabie atmospheric probe

Nonsurvivable descent TV probe

Survivable landed television capsule

Survivable capsule with TV and physical experiment

Survivable capsule with TV and biological experiment

Orbital and direct entry atmospheric probes

Orbital entry descent TV and direct entry atmospheric probes

Orbital entry landed television capsule and direct entry atmospheric probe

vehicles and one capsule per PV

vehicles and two capsules per PV

Orbiter Outcomes

1 OOZERO

2 OONORB

3 OOORB

4 OOLORB

Fly-by
Failure to achieve orbit

Short-term orbital operation

Long-term orbital operation

Capsule Outcomes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

COZERO

CONORN

COATM

COATMS

CODTV

CODTVS

COLAND

COLTV

COSURF

COBIOL

COTVS F

COBITV

COBISF

COA LEX

No attempt at entry

Failure at entry

Atmospheric data (nonsurvivable probe)

Atmospheric data (survivable lander)

Descent television (nonsurvivable probe)

Descent television {survivable lander)

Soft landing

Landed television

Surface physical experiments

Surface biological experiments

Surface television and physical experiments

Surface television and biological experiments

Surface biological and physical experiments

All surface experiments
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data is identical to that of Figure 4-37, except that all values are normalized to a maximum

value of 1. 000. The number attached to each branch is the relative importance (normalized

to a maximum of 1. 000) of the subcate gory represented by that branch in the category repre-

sented by the node from which it emanates. The decimal fractions attached to each node

represent the value of the category represented by that node, normalized so that the value of

the initial node of the tree (i. e., the total value of the project)is 1. 000.

For the nominal input data displayed on the value tree, Figure 4-58 illustrates the output of

the value model, viz., the value (out of a maximum of 1. 000) attached to each orbital outcome

and capsule achievement. These results were obtained by attaching the tip structures of Fig-

ures 4-39 through 4-49 to the value tree and summing like tip categories to arrive at the con-

tributions of each orbital outcome or capsule achievement. Note that 63.8 percent of the

value is attached to initial achievements, with the remainder allocated to repetitions. Also,

approximately 70 percent of the value is placed on capsule performance, and 30 percent on the

performance of the orbiting spacecraft. The most valuable capsule achievements are landed

television (CA5 at 8.3 percent initially) and the life detection experiments (CA7 at 12.1 per-

cent initially). Initial short-term operation of the spacecraft in orbit about the planet (00ORB)

is also valued highly at 10.9 percent.

4.12.1.1.2 Sensitivity of Value Model Output to Input

Figures 4-59 through 4-62 illustrate the implications on decision tree value input (value sub-

model output) of two extreme value functions.

In the value tree of Figure 4-59, all value has been placed on the manned equipment subcate-

gory of space technology. Figure 4-60 demonstrates the effect of such an evaluation on the

relative importance of the various orbital outcomes and capsule achievements. Note that the

highly valued accomplishments are orbit achievement and short-term orbital operation, descent

television, soft landing, and landed television. Life detection contributes insignificantly to the

total value when all of the value emphasis is placed on Voyager as medium for the develop-

ment of equipment for manned exploration of Mars.
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Figure 4-57. Value Model Nominal Input Data

ACHIFVEMFNT VALUE SUMMARY

ACH. FIRST ONE REST
TIME REPT REPTS

OONORR 0.058

O00P8 0,109
OOLORR 0.068 0,017 0.051
CAI 0.028
CA2 0,009
CA3 0.036
CA4 0.060
CA5 0,083 0.02_ 0,0_3
CA6- 0,033 0.Q08 0.024
CA6+ 0.033 0.008 0.0_4
CA7 0.121 0.049 0.097

T_TAL$ 0.638 0.103 0.260

Figure 4-58. Value Model Nominal Output Data
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Figure 4-59.

Figure 4-60.

Value Model Input Data (All Value on Manned Equipment Benefit)

ACH t FIRST ONE REST

TIME REPT REP'S

DONORB _43

OOLOR8 0,033 0,006 0,0_4

c_2 D__o2_
CA3 0,103

c_ _,_n_ .....
-CA5 0,154 0,039 0,116

CA6- 0_026 n,oo6 .0,0_9
CA6 ÷ 0,026 .0,006 0,019

CA7 0,026 n_0%0 0,0_1

TOTALS.__.O,731 _._,070 .0,199

Value Model Output Data (A11 Input Value on Manned Equipment Benefit)
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Figure 4-61. Value Model Input Data (All Value on Unmanned

ACHIEVEMENT VALUE SUMMARY

ACH, FIRST ONE REST

OONORR 0,240
+-OOOR_ o_%_0

OOLORB 0,120 0,030 0,090
CAt 0,099
C_2 O,

-_ ..... O, ..........................
C_4 0,165
C_S 0,033 _,008 0,0_5
CA6- 0,008 0_00_ 0,006
CA6* 0,008 0,00_ 0,006
C_7 0,017 _,007 0,013

........ ;; ....TOTALS O,Bll 0,0 O,'t40

Figure 4-62. Value Model Output Data (All Input Value on Unmanned

Knowhow Benefit)

Knowhow Benefit)
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All the weight in the value tree of Figure 4-61 has been placed on the unmanned knowhow sub-

category of space technology (i. e., Voyager as a medium for developing the knowhow for future

unmanned missions to Mars and other planets). Notice that in Figure 4-62 this results in a strong

shift of value to the orbiter, with the achievement of a successful soft-landing about the only

capsule achievement of significant import.

4.12.1.2 The Cost Model

The cost model was programmed and run with nominal data as specified hi Section 4.9, The

results of the cost model are too numerous to list. Table 4-13 is typical of the results; it

depicts the cost of each configuration, given that it is used as the first configuration in the

project and in the first year it is available.

TABLE 4-13. CONFIGURATION COSTS IF THE PROJECT STARTS WITH THE

CONFIGURATION IN THE FIRST YEAR OF ITS AVAILABILITY

Configuration

VSTOP

VSKIP

VMAR

VSIB

V2IB

VOORB

VOATM

VODTV

VOLTV

VOTVSF

VOVB L

VODATM

VODDTV

VOD LTV

First Available Year of Launch

1971

1971

1971

1973

1973

1973

1973

1973

1973

1973

1975

1973

1973

1973

Cost ($M)

0

55

27O

501

618

678

783

855

1086

1305

1368

810

912

1140
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4.12.1.3 The Probability Model

4.12.1.3.1 Nominal Data

A computer printout sheet summarizing the nominal probability model input data appears as

Figure 4-63, which is basically the probability parameters of Table 4-6 in computer input

format.

The decision tree contains 2300 outcome nodes and 20,000 outcome branches emanating

from these nodes. This requires the probability model to supply some 600 probability dis-

tributions and over 5000 individual probabilities. Just a sample of this output with nominal

input data is given in Tables 4-14 through 4-22. These tables depict the probability of nine

representative configurations achieving all project outcomes, given that the configuration is

employed in the first year that it is available and that the current stage of the project is

OOZERO and COZERO. The tables are in computer numerical language and are readily

decoded with the aid of Table 4-5.

4.12.1.3.2 Sensitivity of Probability Model Output to Input

A sample illustration of the probability model sensitivity to input is given in Tables 4-23

and 4-24. These tables depict the outcome probability distributions for the VOLTV and

VOTVSF configurations, given that the landing environmental confidence (P21) is unity.

Comparison of Table 4-24 with Table 4-21 reveals, for example, that the probability of com-

pletely successful operation of the VOTVSF increases by over 50 percent if the landing

environment is known.
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PAl

PA2
pA3

pA4

pA5
PA6

PAT

PAR

PA9

PA10

PAll
PAl%

PAll

PAll

PAll
PAll

PR1

892 0,78O0O

PR3 0,99800

PB4 0,96500

PB5 0,99000

_G O.98non

PB7 0,90000

P88 0,97000

PCl 0.90000

PC2 0,96000

PC3 0,90000

PC4 0,94000

PC5 0t98990

PC6 0,99000

PC7 0,99000

PO8 0.96000

PC9 0q99520

PCIO 0,93000

PC11 O,

PC12 O,

PC13 ( 0,*) O,

PC15 0,70000

PC16 0,78000

PC17 0,70n00

PC18 0,_5000

PC19 0,90000

PC20 0,95000

PC21 ( Ome ) 0.
PDI 0,98000

P8_ 0,90000

P$2 0,90000

PS3 0,86000

PCM2 0,90000

PCM3 0.60000
PARAME

EKFACT 1000
O_6RTP

ITAB ljl)

ITAQ 2_*)
ITAR 3,*)

ITAB 4,*)

ITAR 8,o)
ITA8 6t*)

ITAB 7,m)

ITAB 8m*)

ITAB 9,*)

ITAB tom')

ITAR 11,*)

ITA8 12_*)

ITAB 13,*)

ITA8 14_*)

HOURS

TETSLO 200,0

TCTSLO 10,0

SORRTM 500,0

ORBTM 2160,0

TSTSFO 30,0

VSRFTM 1.0

VTIME 0,

FAILUR

VLAMH O,

CLAMB (*m 1)

CLAHB (*m 2)

OLAM_ (*m 3)

CLAMB (mm 4

CLAMB (*m 5

CLAMH (*m 6
CLAM8 (m_ 7

CL AMB (*m 8

CLAIR |*, 9

CLAMB (*m I0
CLAM6 (e, 11

CLAMB (*1 12

CLAMB (*e 13

CLAMB {_t %4
CRRLAM

ORRLAM

6ClLAM

CDLLAM

$FLAMR

TVLAMR

VBILAM

0, 0,96130 n,q628n 0,96580 0,96100 0,96100

O, 0.98750 _,98_50 0,97700 0,97350 0.97350

O, 1,00000 1,00000 1,00000 1.00000 1,00000

O, 0.80000 _,84300 0.67600 0,90100 0,92060
0,99000

0,99300

0,95000

0,95000

0,96000
0,90000

Im*) 1,00000 1,00000 0.99000 O, O, O, O, O. O, O, Op O, O, O,
2m*) 1,00000 l,O_OnO 1,00000 0,99000 0,99000 0,99000 0,98000 0,97000 0,95_00 0,92000 0, 0,98000 0,96000 0,94000

31") 1,00000 1,0nO00 1,00000 1,00000 $.00000 %,00000 0,99900 0,99_00 0,99000 0,98000 0.980_0 0,99000 0,99000 0.98000

4_) 1*ObO00 1,00000 1*00000 1,NOOOn 1,00000 1,00000 1,00000 1,00000 1,00000 1.00000 0,99000 1.0_000 1,00000 1.00000

5_m) I*00000 1,00000 1,00000 I,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1.00000 1,00000 1,00000 1,00000 1.00000

6,*) 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1.00000 1,00000 1,00000 1,00000 1.00000 1,00000 1.00000
0,99900

_ote: See Table 4-_ for Reviuw of Pro_bi!lty Code_ I

0,99030 0,99_00 0.99330 0,99430 0.99500
0,92800 0,94550 0.95720 0,96490 0,97000

O. O, O. 0, O. O. O, 1.00000 l,O000O 1,00000 O. 0, 1.00000

O, O, O, O, O, O, O, O, O, O, O,SnO00 0,50000 0.50000

,0

1,0 I,o 2,0 4$o 5,o 6,0

NL v NSC IPNTRY JENTRY OSL DSL TVO TVO ROI_ RORB SPF STVE 81n NOSVLV IORR
0 0 0 0 0 0 0 0 0 0 0 U 0 0 0

0 0 o 0 0 Q 0 0 o 0 0 0 0 0 n

2 2 I 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0

2 2 0 0 0 0 0 0 0 0 0 0 0 1 I

1 2 0 0 0 0 0 0 0 0 0 0 0 1 I

1 2 0 I 0 0 0 0 0 O _ 0 0 1 1

t 2 0 I 0 0 0 _ 0 0 0 0 0 1 1

I 2 0 I I 0 0 1 I 0 0 I 0 I 1

I 2 _ 1 1 0 0 1 1 0 I 1 0 1 1
I 2 1 1 0 0 I I 0 0 I 1 1

1 2 1 i 0 0 0 0 0 0 0 0 _ 1 I

I 2 _ I 0 0 0 I 0 0 0 0 0 I

1 2 1 1 I 0 0 I I 0 0 1 0 1 i

50,0 1000,0 3000,0 4000,0 bO00,O

4_72,0 8016,0 5496,0 5856,0 4944,0

0,713E-04 N,3978.04 0,2378-04 0,$608o04 0,I03_=04

O, 0, O, 0, O, 0,

O, 0, O, O. O, O,

0,2608_04 O, O, O, O, O,

O, O, O, O, O, O,

0 i O, 0, O, O, O,

O, O, O, O. 0, O.

0, 0,202E_04 0,165_04 0,1378_64 0,117E_04 0,101E_04

0, 0,40_E;04 0,3058=0 _ 0,2348-04 0,1858w04 0,151E-04

O_ 0.80_E_04 0,530E;04 0,365E=04 0,264E=04 0,2028s04

O, 0.998E_04 0,6168_04 0,399E'04 0,2758-04 0_028=04

O, 0,120E_03 0,6998=04 0,430E-04 0,2838=04 0,2028.04

0_ 0.2028=04 0=1658=04 01137_-04 011178=04 0,10_E_04

ql n,4088o04 0,3058_04 0_234E=04 0,185Ee04 0,1518-04

O, 0,801E=04 0,830_=04 0*_658"04 0,2648=04 0,2028_04

0,4758_04 0,4008=04 0,3338.04 0,_778-04 0,2348-04 fl,2008=04

0,7508_04 0.2008=04 0,1658-04 0,1378-04 0,1168_04 0,1008-04

O. 0,5278_04 0.3208-04 0,2048-04 0.138E-04 0,$018-04

O, 0t1508-0_ 0,8028.04 0,5628-04 0,3948-64 0,3058_04

O. 0,3668-03 0,1488.03 0,6608-04 0.338E-04 0,2008=04

O_ 0=108E-03 0,4788_04 0,2408_04 0,1428-04 0,1008=04

O, 0,7988-03 0,3268-03 0,1586-03 0,8508.04 0,5138_04

Figure 4-63. Probability Model Nominal Input Data

4-157



TABLE 4-14. VMAR PROBABILITY MODEL NOMINAL OUTPUT DATA

(See Table 4-5 for Review of State Variable Codes)

F ROM TO

ooico ooIco
4 1 1 1 1 3 1

4 1 1 1 2 3 1

4 1 1 1 3 3 1

4 1 1 1 4 3 1

4 1 1 1 5 3 1

4 1 1 1 6 3 1

4 1 1 1 7 3 1

4 1 1 1 8 3 1

4 1 1 1 9 3 1

4 1 1 1 10 3 1

4 1 1 1 11 3 1

4 1 1 1 12 3 1

4 1 1 1 13 3 1

4 1 1 1 14 3 1

4 1 1 2 1 3 1

4 1 1 2 2 3 1

4 1 1 2 3 3 1

4 1 1 2 4 3 1

4 1 1 2 5 3 1

4 1 1 2 6 3 1

4 1 1 2 7 3 1

4 1 1 2 8 3 1

4 1 1 2 9 3 1

4 1 1 2 10 3 1

4 1 1 2 11 3 1

4 1 1 2 12 3 1

4 1 1 2 13 3 1

4 1 1 2 14 3 1

4 1 1 3 1 3 1

4 1 1 3 2 3 1

4 1 1 3 3 3 1

4 1 1 3 4 3 1

4 1 1 3 5 3 1

4 1 1 3 6 3 1

4 1 1 3 7 3 1

4 1 1 3 8 3 1

4 1 1 3 9 3 1

4 1 1 3 10 3 1

4 1 1 3 11 3 1

4 1 1 3 12 3 1

4 1 1 3 13 3 1

4 1 1 3 14 3 1

4 1 1 4 1 3 1

4 1 1 4 2 3 1

4 1 1 4 3 3 1

4 1 1 4 4 3 1

4 1 1 4 5 3 1

4 1 1 4 6 3 1

4 1 1 4 7 3 1

4 1 1 4 8 3 1

4 1 1 4 9 3 1

4 1 1 4 10 3 1

4 1 1 4 11 3 1

4 1 1 4 12 3 1

4 1 1 4 13 3 1

4 1 1 4 14 3 1

REPEATS

004 CA5 I CA6 I CA7

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

Prob.

0.11956

0.12059

0.75985

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.
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TABLE 4-15. VSIB PROBABILITY MODEL NOMINAL OUTPUT DATA

(See Table 4-5 for Review of State Variable Codes}

FROM TO _ REPEATS
Prob.

6 1 1 1 1 4 1 1 1 1 0.39884

6 1 1 1 2 4 1 1 1 1 0.

6 1 1 1 3 4 1 1 1 1 O.

6 1 1 1 4 4 1 1 1 1 O.

6 1 1 1 5 4 1 1 1 1 O.

6 1 1 1 6 4 1 1 1 1 O.

6 1 1 1 7 4 1 1 1 1 O.

6 1 i i 8 4 1 1 1 1 O.

6 1 1 1 9 4 1 1 1 1 O.

6 1 1 1 10 4 1 1 1 1 O.

6 1 1 1 11 4 1 1 1 1" O.

6 1 1 1 12 4 1 1 1 1 0.

6 1 1 1 13 4 1 1 1 1 0.

6 1 1 1 14 4 1 1 1 1 O.

6 1 1 2 1 4 1 1 1 1 0.20274

6 1 1 2 2 4 1 1 1 1 O.

6 1 1 2 3 4 1 1 1 1 O.

6 1 1 2 4 4 1 1 1 1 O.

6 1 1 2 5 4 1 1 1 1 O.

6 1 1 2 6 4 1 1 1 1 O.

6 1 1 2 7 4 1 1 1 1 O.

6 1 1 2 8 4 1 1 1 1 O.

6 1 1 2 9 4 1 1 1 1 O.

6 1 1 2 10 4 1 1 1 1 O.

6 1 1 2 11 4 1 1 1 1 0.

6 1 1 2 12 4 1 1 1 1 0.

6 1 1 2 13 4 1 1 1 1 0.

6 1 1 2 14 4 1 1 1 1 0.

6 1 1 3 1 4 1 1 1 1 0.11767

6 1 1 3 2 4 1 1 1 1 0.

6 1 1 3 3 4 1 1 1 1 0.

6 1 1 3 4 4 1 1 1 1 0.

6 1 1 3 5 4 1 1 1 1 0.

6 1 1 3 6 4 1 1 1 1 0.

6 1 1 3 7 4 1 1 1 1 O.

6 1 1 3 8 4 1 1 1 1 O.

6 1 1 3 9 4 1 1 1 1 O.

6 1 1 3 10 4 1 1 1 1 O.

6 1 1 3 11 4 1 1 1 1 O.

6 1 1 3 12 4 1 1 1 1 O.

6 1 1 3 13 4 1 1 1 1 O.

6 1 1 3 14 4 1 1 1 1 O.

6 1 1 4 1 4 1 1 1 1 0.28076

6 1 1 4 2 4 1 1 1 1 O.

6 1 1 4 3 4 1 1 1 1 O.

6 1 1 4 4 4 1 1 1 1 O.

6 1 1 4 5 4 1 1 1 1 O.

6 1 1 4 6 4 1 1 1 1 O.

6 1 1 4 7 4 1 1 1 1 O.

6 1 1 4 8 4 1 1 1 1 O.

6 1 1 4 9 4 1 1 1 1 O.

6 1 1 4 10 4 1 1 1 1 O.

6 1 1 4 11 4 1 1 1 1 O.

6 1 1 4 12 4 1 1 1 1 O.

6 1 1 4 13 4 1 1 1 1 O.

6 1 1 4 14 4 1 1 1 1 O.
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TABLE 4-16. V2SIB PROBABILITY MODEL NOMINAL OUTPUT DATA

(See Table 4-5 for Review of State Variable Codes)

FROM TO

ooI co ooIco
6 1 1 1 1 5

6 1 1 1 2 5

6 1 1 1 3 5

6 1 1 1 4 5

6 1 1 1 5 5

6 1 1 1 6 5

6 1 1 1 7 5

6 1 1 1 8 5

6 1 1 1 9 5

6 1 1 1 10 5

6 1 1 1 11 5

6 1 1 1 12 5

6 1 1 1 13 5

6 1 1 1 14 5

6 1 1 2 1 5

6 1 1 2 2 5

6 1 1 2 3 5

6 1 1 2 4 5

6 1 1 2 5 5

6 1 1 2 6 5

6 1 1 2 7 5

6 1 1 2 8 5

6 1 1 2 9 5

6 1 1 2 10 5

6 1 1 2 11 5

6 1 1 2 12 5

6 1 1 2 13 5

6 1 1 2 14 5

6 1 1 3 1 5

6 1 1 3 2 5

6 1 1 3 3 5

6 1 1 3 4 5

6 1 1 3 5 5

6 1 1 3 6 5

6 1 1 3 7 5

6 1 1 3 8 5

6 1 1 3 9 5

6 1 1 3 10 5

6 1 1 3 11 5

6 1 1 3 12 5

6 1 1 3 13 5

6 1 1 3 14 5

6 1 1 4 1 5

6 1 1 4 2 5

6 1 1 4 3 5

6 1 1 4 4 5

6 1 1 4 5 5

6 1 1 4 6 5

6 1 1 4 7 5

6 1 1 4 8 5

6 1 1 4 9 5

6 1 1 4 10 5

6 1 1 4 11 5

6 1 1 4 12 5

6 1 1 4 13 5

6 1 1 4 14 5

RE PEATS

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 i 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

i 1 1 1

1 I 1 I

1 1 1 1

1 1 1 1

1 1 1 1

I 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

I 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

I 1 1 1

i 1 1 1

1 1 1 1

1 1 i 1

1 1 I 1

1 1 i 1

1 i 1 i

I 1 1 i

1 1 1 i

1 1 1 1

1 1 1 1

1 1 1 1

Prob.

O.15762

0o

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.27126

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.12119

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.44992

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.
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TABLE 4-17. VOORB PROBABILITY MODEL NOMINAL OUTPUT DATA

(See Table 4-5 for Review of State Variable Codes)

FROM

° I>_ OO CO

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 i

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 i

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

TO

OO CO

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

1 i0

1 11

1 12

1 13

1 14

2 1

2 2

2 3

2 4

2 5

2 6

2 7

2 8

2 9

2 10

2 11

2 12

2 13

2 14

3 1

3 2

3 3

3 4

3 5

3 6

3 7

3 8

3 9

3 I0

3 11

3 12

3 13

3 14

4 1

4 2

4 3

4 4

4 5

4 6

4 7

4 8

4 9

4 10

4 11

4 12

4 13

4 14

REPEATS
Prob.

6 1 1 1 1 0.30258

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 i 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.22254

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 i 1 1 0.

6 1 1 1 1 0.09337

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 i 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.38151

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 i 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.

6 1 1 1 1 0.
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TABLE 4-18. VOATM PROBABILITY MODEL NOMINAL OUTPUT DATA

(See Table 4-5 for Review of State Variable Codes)

FROM TO _ REPEATS
Prob.

oo1 o oo1 o oo 1
6 I i I 1 7 I 1 I 1 O. 30962

6 1 1 1 2 7 1 1 1 1 O.

6 1 1 1 3 7 1 1 1 1 O.

6 1 1 1 4 7 1 1 1 1 O.

6 1 1 1 5 7 1 1 1 1 O.

6 1 1 1 6 7 1 1 1 1 O.

6 1 1 1 7 7 1 1 1 1 O.

6 1 1 1 8 7 1 1 1 1 O.

6 1 1 1 9 7 1 1 1 1 O.

6 1 1 1 10 7 i 1 1 1 O.

6 1 1 1 11 7 1 1 1 1 O.

6 1 1 1 12 7 1 1 1 1 O.

6 1 1 1 13 7 1 1 1 1 O.

6 1 1 1 14 7 1 1 1 1 O.

6 1 1 2 1 7 1 1 1 1 O. 22279

6 1 1 2 2 7 1 1 1 1 O.

6 1 1 2 3 7 1 1 1 1 O.

6 1 1 2 4 7 1 1 1 1 O.

6 1 1 2 5 7 1 1 1 1 O.

6 1 1 2 6 7 1 1 1 1 O.

6 1 1 2 7 7 1 1 1 1 O.

6 1 1 2 8 7 1 1 1 1 O.

6 1 1 2 9 7 1 1 1 1 O.

6 1 1 2 10 7 1 1 1 1 O.

6 1 1 2 11 7 1 1 1 1 O.

6 1 1 2 12 7 1 1 1 1 O.

6 1 1 2 13 7 1 1 1 1 O.

6 1 1 2 14 7 1 1 1 1 O.

6 1 1 3 1 7 1 1 1 1 O.

6 1 1 3 2 7 1 1 1 1 0.01417

6 1 1 3 3 7 1 1 1 1 0.07845

6 1 1 3 4 7 1 1 1 1 O.

6 1 1 3 5 7 1 1 1 1 0.

6 1 1 3 6 7 1 1 1 1 0.

6 1 1 3 7 7 1 1 1 1 O.

6 1 1 3 8 7 1 1 1 1 O.

6 1 1 3 9 7 1 1 1 1 O.

6 1 1 3 10 7 1 1 1 1 O.

6 1 1 3 11 7 1 1 1 1 O.

6 1 1 3 12 7 1 1 1 1 O.

6 1 1 3 13 7 1 1 1 1 O.

6 1 1 3 14 7 1 1 1 1 O.

6 1 1 4 1 7 1 1 1 1 O.

6 1 1 4 2 7 1 1 1 1 O. 04994

6 1 1 4 3 7 1 1 1 1 O. 32503

6 1 1 4 4 7 1 1 1 1 O.

6 1 1 4 5 7 1 1 1 1 O.

6 1 1 4 6 7 1 1 1 1 O.

6 1 1 4 7 7 1 1 1 1 O.

6 1 1 4 8 7 1 1 1 1 O.

6 1 1 4 9 7 1 1 1 1 O.

6 1 1 4 I0 7 1 1 1 1 O.

6 1 1 4 Ii 7 1 1 1 1 O.

6 1 1 4 12 7 1 1 1 1 O.

6 1 1 4 13 7 1 1 1 1 O.

6 1 1 4 14 7 1 1 1 1 O.
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TABLE 4-19. VODTV PROBABILITY MODEL NOMINAL OUTPUT DATA

(See Table 4-5 for Review of State Variable Codes}

FROM TO

ooIco ooIco
6 1 1 1 1

6 1 1 1 2

6 1 1 1 3

6 1 1 1 4

6 1 1 1 5

6 1 1 1 6

6 1 1 1 7

6 1 1 i 8

6 1 1 1 9

6 1 1 1 10

6 1 1 1 11

6 1 1 1 12

6 1 1 1 13

6 1 1 1 14

6 1 1 2 i

6 1 1 2 2

6 1 1 2 3

6 1 1 2 4

6 1 1 2 5

6 1 1 2 6

6 1 1 2 7

6 I 1 2 8

6 1 1 2 9

6 1 1 2 10

6 1 1 2 11

6 1 1 2 12

6 1 1 2 13

6 1 1 2 14

6 1 1 3 1

6 1 1 3 2

6 1 1 3 3

6 1 1 3 4

6 1 1 3 5

6 1 1 3 6

6 1 1 3 7

6 1 1 3 8

1 1 3 9

6 1 1 3 10

6 1 1 3 11

6 1 1 3 12

6 1 1 3 13

6 1 1 3 14

6 1 1 4 1

6 1 1 4 2

6 1 1 4 3

6 1 1 4 4

6 1 1 4 5

6 1 1 4 6

6 1 1 4 7

6 1 1 4 8

6 1 1 4 9

6 1 1 4 10

6 1 1 4 11

6 1 1 4 12

6 1 1 4 13

6 1 1 4 14

REPEATS

Prob.

_9 004 I CA5 I CA6 I CA7

8 1 1 1 1 0. 31667

8 1 1 1 1 0.

8 1 1 1 1 0.

8 1 1 1 1 0.

8 1 1 1 1 0.

8 1 1 1 1 0.

8 1 1 1 1 0.

8 1 1 1 1 0.

8 1 1 1 1 0.

8 1 1 1 1 0.

8 1 1 1 1 0.

8 1 1 1 1 0.

8 1 1 1 1 0.

8 1 1 1 1 0.

8 1 1 1 1 0. 22051

8 1 1 1 1 0.

8 1 1 1 1 0.

8 1 1 1 1 0.

8 1 1 1 1 0.

8 1 1 1 1 0.

8 1 1 1 1 0.

8 1 1 1 1 0.

8 1 1 1 1 0.

8 1 1 1 1 0.

8 1 1 1 1 0.

8 1 1 1 1 0.

8 1 1 1 1 0.

8 i 1 1 1 O.

8 i i I I O.

8 i I 1 I O. 01417

8 i I 1 i O. 00448

8 1 1 1 1 O°

8 1 1 1 1 0.07302

8 1 1 1 1 O.

8 1 1 1 1 O.

8 1 1 1 1 O.

8 1 1 1 1 O.

8 1 1 1 1 O.

8 1 1 1 1 O.

8 1 1 1 1 O.

8 1 1 1 1 O.

8 1 1 1 1 O.

8 1 1 1 1 O.

8 1 1 1 1 0. 04982

8 1 1 1 1 0. 01260

8 1 1 1 1 0.

8 1 1 1 1 0. 30873

8 1 1 1 1 0.

8 1 1 1 1 0.

8 1 1 1 1 0.

8 1 1 1 1 0.

8 1 1 1 1 0.

8 1 1 1 1 0.

8 1 1 1 1 0.

8 1 1 1 1 0.

8 1 1 1 1 0.
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TABLE 4-20. VOLTV PROBABILITY MODEL NOMINAL OUTPUT DATA

(See Table 4-5 for Review of State Variable Codes)

FROM TO

ooI ooI
6 1 1 1 1

6 i 1 I 2

6 1 1 1 3

6 1 1 1 4

6 1 1 1 5

6 1 1 1 6

6 1 1 1 7

6 1 1 1 8

6 1 1 1 9

6 1 1 1 10

6 1 1 1 11

6 1 1 1 12

6 1 1 1 13

6 1 1 1 14

6 1 1 2 1

6 1 1 2 2

6 1 1 2 3

6 1 1 2 4

6 1 1 2 5

6 1 1 2 6

6 1 1 2 7

6 1 1 2 8

6 1 1 2 9

6 1 1 2 i0

6 1 1 2 11

6 1 1 2 12

6 1 1 2 13

6 i 1 2 14

6 1 1 3 1

6 1 1 3 2

6 1 1 3 3

6 1 1 3 4

6 1 1 3 5

6 1 1 3 6

6 1 1 3 7

6 1 1 3 8

6 1 1 3 9

6 1 1 3 10

6 1 1 3 11

6 1 1 3 12

6 1 1 3 13

6 1 1 3 14

6 1 1 4 1

6 1 1 4 2

6 1 1 4 3

6 1 1 4 4

6 1 1 4 5

6 1 1 4 6

6 1 1 4 7

6 1 1 4 8

6 1 1 4 9

6 1 1 4 10

6 1 1 4 11

6 1 1 4 12

6 1 1 4 13

6 1 1 4 14

REPEATS Prob.

004 CA5 CA6 I CA7

9 1 1 1 1 0.33076

9 1 1 1 1 0.

9 1 1 1 1 0.

9 1 1 1 1 0.

9 1 1 1 1 0.

9 1 1 1 1 0.

9 1 1 1 1 0.

9 1 1 I 1 0.

9 1 1 1 1 0.

9 i 1 1 1 0.

9 1 1 1 1 0.

9 1 1 1 1 0.

9 1 1 1 1 0.

9 1 1 1 1 0.

9 1 1 1 1 0.21597

9 1 1 1 1 0.

9 1 1 1 1 0.

9 1 1 1 1 0.

9 1 1 1 1 0.

9 1 1 1 1 0.

9 1 1 1 1 0.

9 1 1 1 1 0.

9 1 1 1 1 0.

9 1 1 1 1 0.

9 1 1 1 1 0.

9 1 1 1 1 0.

9 1 1 1 1 0.

9 1 1 1 1 0.

9 1 1 1 1 0.

9 1 1 1 1 0.01409

9 1 1 1 1 0.

9 1 1 1 1 0.00047

9 1 1 1 1 0.

9 1 1 1 1 0.00672

9 1 1 1 i 0.00716

9 1 1 1 1 0.06133

9 1 1 1 1 0.

9 1 1 1 1 0.

9 1 1 1 1 0.

9 1 1 1 1 0.

9 1 1 1 1 0.

9 1 1 1 1 0.

9 I 1 1 1 0.

9 1 1 1 1 0.04938

9 1 1 1 1 0.

9 1 1 1 1 0.00129

9 1 1 1 1 0.

9 1 1 1 1 0.02212

9 1 1 1 1 0,02264

9 1 1 1 1 0.26805

9 1 1 1 1 0.

9 1 1 1 1 0.

9 1 1 1 1 0.

9 1 1 1 i 0.

9 1 1 1 1 0.

9 1 1 1 1 0.
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TABLE 4-21. VOTVSF PROBABILITY MODEL NOMINAL OUTPUT DATA

(See Table 4-5 for Review of State Variable Codes}

F ROM

oolco
6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

6 1 1

TO

OO[ CO

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

1 10

1 11

1 12

1 13

1 14

2 1

2 2

2 3

2 4

2 5

2 6

2 7

2 8

2 9

2 10

2 11

2 12

2 13

2 14

3 1

3 2

3 3

3 4

3 5

3 6

3 7

3 8

3 9

3 10

3 11

3 12

3 13

3 14

4 1

4 2

4 3

4 4

4 5

4 6

4 7

4 8

4 9

4 10

4 11

4 12

4 13

4 14

REPEATS
o Prob.

_ OO4 CA5 I CA6 [ CA7

10 1 1 1 1 0.35189

10 1 1 1 1 0.

10 1 1 1 1 0.

10 1 1 1 1 0.

10 1 i 1 1 0.

10 1 1 1 1 0.

10 1 1 1 1 0.

10 1 i 1 1 0.

10 1 1 1 1 0.

10 1 1 1 1 0.

10 1 1 1 1 0.

10 1 1 1 1 0.

10 1 1 1 1 0.

10 1 1 1 1 0.

10 1 1 1 1 0.20915

10 1 1 1 1 0.

10 1 1 1 1 0.

10 1 1 1 1 0.

10 1 1 1 1 0.

10 I 1 1 1 0.

10 1 1 1 1 0.

10 1 1 1 1 0.

10 1 1 1 1 0.

10 1 1 1 1 0.

10 1 1 1 1 0.

10 1 1 1 1 0.

10 1 1 1 1 0.

10 1 1 1 1 0.

10 1 1 1 1 0.

10 1 1 1 1 0.01378

10 1 1 1 1 O.

10 1 1 1 1 0.00045

10 1 1 1 1 O.

10 1 1 1 1 0.00650

10 1 1 1 1 0.00195

10 1 1 1 1 0.01035

10 1 1 1 1 0.00503

10 1 1 1 1 O.

10 1 1 1 1 0.04888

10 1 1 1 1 O.

10 1 1 1 1 O.

10 1 1 1 1 O.

10 1 1 1 1 O.

10 1 1 1 1 0.04817

10 1 1 1 1 O.

10 1 1 1 1 0.00125

10 1 1 1 1 O.

10 1 1 1 1 0.02143

10 1 1 1 1 0.00592

10 1 1 1 1 0.03463

10 1 1 1 1 0.01619

10 1 1 1 1 O.

10 1 1 1 1 0.22442

10 1 1 1 1 O.

10 1 1 1 1 0.

10 1 1 1 1 0.
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TABLE 4-22. VODATM PROBABILITY MODEL NOMINAL OUTPUT DATA

(See Table 4-5 for Review of State Variable Codes}

FROM TO _ REPEATS
o Prob.

_ OO[ CO OO1 CO 0 oo4l CA5 ] CA6 CA7

6 1 I 1 1 12 1 1 1 1 0.31301

6 1 1 1 2 12 1 1 1 1 0.

6 1 1 1 3 12 1 1 1 1 0.

6 1 1 1 4 12 1 1 1 1 0.

6 1 1 1 5 12 1 1 1 1 0.

6 1 1 1 6 12 1 1 1 i 0.

6 1 1 1 7 12 1 1 1 1 0.

6 1 1 1 8 12 1 1 1 1 0.

6 1 1 1 9 12 1 1 1 1 0.

6 1 1 1 10 12 1 1 1 1 0.

6 1 1 1 11 12 1 1 l 1 0.

6 1 1 1 12 12 1 1 1 1 0.

6 1 1 1 13 12 1 1 1 1 0.

6 1 1 1 14 12 1 1 1 1 0.

6 1 1 2 1 12 1 1 1 1 0.

6 1 1 2 2 12 1 1 1 1 0.03042

6 1 1 2 3 12 1 1 1 1 0.19149

6 1 1 2 4 12 1 1 1 1 0.

6 1 1 2 5 12 1 1 1 1 0.

6 1 1 2 6 12 1 1 1 1 0.

6 1 1 2 7 12 1 1 1 1 0.

6 1 1 2 8 12 i 1 1 1 0.

6 1 1 2 9 12 1 1 1 1 0.

6 1 1 2 10 12 1 1 1 1 0.

6 1 1 2 11 12 1 1 1 1 0.

6 1 1 2 12 12 1 1 1 1 0.

6 1 1 2 13 12 1 1 1 1 0.

6 1 1 2 14 12 1 1 1 1 0.

6 1 1 3 1 12 1 1 1 1 0.

6 1 1 3 2 12 1 1 1 1 0.00265

6 1 1 3 3 12 1 1 1 1 0.09013

6 1 1 3 4 12 1 1 1 1 0.

6 1 1 3 5 12 1 1 1 1 0.

6 1 1 3 6 12 1 1 1 1 0.

6 1 1 3 7 12 1 1 1 1 0.

6 1 1 3 8 12 1 1 1 1 0.

6 1 1 3 9 12 1 1 1 1 0.

6 1 1 3 10 12 1 1 1 1 0.

6 1 1 3 11 12 1 1 1 1 0.

6 1 1 3 12 12 1 1 1 1 0.

6 1 1 3 13 12 1 1 1 1 0.

6 1 1 3 14 12 1 1 1 1 0.

6 1 1 4 1 12 1 1 1 1 0.

6 1 1 4 2 12 1 1 1 1 0.00941

6 1 1 4 3 12 1 1 1 1 0.36289

6 1 1 4 4 12 1 1 1 1 0.

6 1 1 4 5 12 1 1 1 1 0.

6 1 1 4 6 12 1 1 1 1 0.

6 1 1 4 7 12 1 1 1 1 0.

6 1 1 4 8 12 1 1 1 1 0.

6 I 1 4 9 12 1 1 1 l 0.

6 1 1 4 10 12 1 1 1 1 0.

6 l 1 4 11 12 1 1 1 1 0.

6 1 1 4 12 12 i 1 1 1 0.

6 1 1 4 13 12 1 1 1 1 0.

6 i 1 4 14 12 i 1 1 1 0.
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TABLE 4-23. VOLTV PROBABILITY MODEL OUTPUT DATA WITH

NOMINAL INPUT DATA EXCEPT FOR UNITY

LANDED ENVIRONMENTAL CONFIDENCE

(See Table 4-5 for Review of State Variable Codes)

FROM TO
_ REPEATS

Prob.

6 1 1 1 1 9 1 1 1 1 0. 33076

6 1 1 1 2 9 1 1 1 1 0.

6 1 1 1 3 9 1 1 1 1 0.

6 1 1 1 4 9 1 1 1 1 0.

6 ! ] 1 5 9 1 1 1 1 0.

6 1 1 1 6 9 1 1 i 1 O.

6 1 1 1 7 9 1 1 1 1 O.

6 1 1 1 8 9 1 1 1 1 O.

6 1 1 1 9 9 1 1 1 1 O.

6 1 1 1 10 9 1 1 1 1 O.

6 1 1 1 11 9 1 1 1 1 O.

6 1 1 1 12 9 1 1 1 1 O.

6 1 1 1 13 9 1 1 1 1 O.

6 1 1 1 14 9 1 1 1 1 O.

6 1 1 2 1 9 1 1 1 1 0.02170

6 1 1 2 2 9 1 1 1 1 O.

6 1 1 2 3 9 1 1 1 1 O.

6 1 1 2 4 9 1 1 1 1 O.

6 1 1 2 5 9 1 1 1 1 O.

6 1 1 2 6 9 1 1 1 1 O.

6 1 1 2 7 9 1 1 1 1 O.

6 1 1 2 8 9 1 1 1 1 0.

6 1 1 2 9 9 1 1 1 1 0.

6 1 1 2 10 9 1 1 1 1 0.

6 1 1 2 11 9 1 1 1 1 O.

6 1 1 2 12 9 1 1 1 1 O.

6 1 1 2 13 9 1 1 1 1 O.

6 1 1 2 14 9 1 1 1 1 O.

6 1 1 3 1 9 1 1 1 1 O.

6 1 1 3 2 9 1 1 1 1 0.02013

6 1 1 3 3 9 1 1 1 1 O.

6 1 1 3 4 9 1 1 1 1 0.00067

6 1 1 3 5 9 1 1 1 1 O.

6 1 1 3 6 9 1 1 1 1 0.00960

6 1 1 3 7 9 1 1 1 1 0.01023

6 1 1 3 8 9 1 1 1 1 0.08761

6 1 1 3 9 9 1 1 1 1 O.

6 1 1 3 10 9 1 1 1 1 O.

6 1 1 3 11 9 1 1 1 1 O.

6 1 1 3 12 9 1 1 1 1 O.

6 1 1 3 13 9 1 1 1 1 O.

6 1 1 3 14 9 1 1 1 1 O.

6 1 1 4 1 9 1 1 1 1 O.

6 1 1 4 2 9 1 1 1 1 0.07054

6 1 1 4 3 9 1 1 1 1 O.

6 1 1 4 4 9 1 1 1 1 0.00184

6 1 1 4 5 9 1 1 1 1 0.

6 1 1 4 6 9 1 1 1 1 0.03160

6 1 1 4 7 9 1 1 1 1 0.03235

6 1 1 4 8 9 1 1 1 1 0.38294

6 1 1 4 9 9 1 1 1 1 0.

6 1 1 4 10 9 1 1 1 1 0.

6 1 1 4 11 9 1 1 1 1 0.

6 1 1 4 12 9 1 1 1 1 0.

6 1 1 4 13 9 1 1 1 1 0.

6 1 1 4 14 9 1 1 1 1 0.

4-167



TABLE 4-24. VOTVSF PROBABILITY MODEL OUTPUT DATA WITH

NOMINAL INPUT DATA EXCEPT FOR UNITY

LANDED ENVIRONMENTAL CONFIDENCE

(See Table 4-5 for Review of State Variable Codes)

4-168

FROM TO _ REPEATS
o Prob.

°°I °°I  A°I
6 1 1 1 i I0 i 1 i i 0.35189

6 1 1 1 2 10 1 1 1 1 0.

6 1 1 1 3 10 1 1 1 1 0.

6 1 1 1 4 10 1 1 1 1 0.

6 1 1 1 5 10 1 1 1 1 0.

6 1 1 1 6 10 1 1 1 1 0.

6 1 1 1 7 10 1 1 1 1 0.

6 1 1 1 8 10 i 1 1 1 0.

6 1 1 1 9 10 1 1 1 1 0.

6 1 1 1 10 10 1 1 1 1 0.

6 1 1 1 11 10 1 1 1 1 0.

6 1 1 1 12 10 i 1 1 1 0.

6 1 1 1 13 I0 1 1 1 1 0.

6 1 1 1 14 i0 1 1 1 1 0.

6 1 1 2 1 i0 1 1 1 1 0.02102

6 1 1 2 2 I0 1 1 1 1 0.

6 1 1 2 3 10 1 1 1 1 0.

6 1 1 2 4 I0 1 1 1 1 0.

6 1 1 2 5 10 1 1 1 1 0.

6 1 1 2 6 10 1 1 1 1 0.

6 1 1 2 7 10 1 1 1 1 0.

6 1 1 2 8 10 1 1 1 1 0.

6 1 1 2 9 10 1 1 1 1 0.

6 1 1 2 10 10 1 1 1 1 0.

6 1 1 2 11 I0 1 1 1 1 0.

6 1 1 2 12 10 1 1 1 1 0.

6 1 1 2 13 i0 1 1 1 1 0.

6 1 1 2 14 10 1 1 1 1 0.

6 1 1 3 1 10 1 1 1 1 0.

6 1 1 3 2 10 1 1 1 1 0.01968

6 1 1 3 3 10 1 1 1 1 O.

6 1 1 3 4 10 1 1 1 1 0.00065

6 1 1 3 5 10 1 1 1 1 O.

6 1 1 3 6 i0 1 1 1 1 0.00928

6 1 1 3 7 i0 1 1 1 1 0.00278

6 1 1 3 8 10 1 1 1 1 0.01479

6 1 1 3 9 10 1 1 1 1 0.00718

6 1 1 3 10 10 1 1 1 1 O.

6 1 1 3 11 10 1 1 1 1 0.06983

6 1 1 3 12 10 1 1 1 1 O.

6 1 1 3 13 10 1 1 1 1 O.

6 1 1 3 14 10 1 1 1 1 O.

6 1 1 4 1 10 1 1 1 1 O.

6 1 1 4 2 10 1 1 1 1 0.06881

6 1 1 4 3 10 1 1 1 1 O.

6 1 1 4 4 10 1 1 1 1 0.00179

6 1 1 4 5 10 1 1 1 1 O.

6 1 1 4 6 10 1 1 1 1 0.03061

6 1 1 4 7 10 1 1 1 1 0.00845

6 1 1 4 8 10 1 1 1 1 0.04948

6 1 1 4 9 10 1 1 1 1 0.02313

6 1 1 4 10 10 1 1 1 1 O.

6 1 1 4 11 10 1 1 1 1 0.32060

6 1 1 4 12 I0 1 1 1 1 O.

6 1 1 4 13 10 1 1 1 1 O.

6 1 1 4 14 I0 1 1 1 1 0.



4.12.2 DECISION MODEL RESULTS

This subsection contains the results of initial, limited exercising of the SPAN system.

First, a nominal dollar value per value point (one value point = total value of Voyager value

tree} is selected, and the optimal policy for this point value and nominal input data is

described and discussed. Then, the sensitivity of this policy to the assigned point value is

examined. Other discussions include policy analysis for various levels of risk aversion,

cost and value time discounting, and combinations of risk aversion and discounting. Finally,

the question of launch vehicle redundancy (i. e., one versus two Saturn V's) is analyzed.

The final portion of this subsection summarizes the preliminary conclusions of this decision

analysis and recommendations for future activity.

4.12.2.1 Decision Policy for Nominal Input Data (DECPOL}

To obtain project profiles comparable to those which have previously been considered for

Voyager, results with the pilot model and early analysis with the full scale model sug-

gested that a X (see Section 4.5.10) at $20 billion was appropriate, and this value was taken

as nominal for these preliminary exercises. The optimal decision policy for the completely

nominal case (i. e., nominal submodel inputs and nominal point dollar value} is summarized

in Table 4-25.

TABLE 4-25. OPTIMAL DECISION POLICY FOR NOMINAL INPUT DATA

AND NOMINAL DOLLAR EVALUATION (PRELIMINARY EXERCISES}

1971: VMAR

1973 : VOTVSF

1975-81: VOVBL

Expected Value = 0.692

Expected Cost = $5131.7 million

Net Expected Value = $8712.3 million

This policy can be interpreted as always flying the most sophisticated configuration available.
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4.12.2.2 Policy Sensitivity to Project Evaluation (DECREG)

The assignment of dollar value per value point was varied from zero to infinity with nominal

submodel data inputs to derive the entire set of dominant policies, using the DECREG

program of Section 4.11.8.3. The results of this regional analysis are plotted in cost-

benefit space in Figure 4-64. The dominant policy set was found to contain some 20 policies,

the expected costs and values of which can be read from the figure.

It can be seen that the nominal policy of Table 4-25 is identically that policy which returns

maximum expected value; i.e., Policy 1 of Figure 4-64. Within the framework of these

preliminary exercises, a detailed evaluation of the remaining 19 lower valued, lower cost

policies was not performed. This is indeed a fertile area for further analysis.

<
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EXPECTED COST ($ MILLION)

5OOO 6000

Figure 4-64. Dominant Policies for Nominal Input Data
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4.12.2.3 Policy Sensitivity to Time Preference (DECPOL with value and cost discounting}

In a project such as Voyager, it may be desirable that valuable outcomes occur earlier in time

and that costs are incurred later in time; this is the phenomenon of time preference. Perhaps

the simplest example of time preference is a bank deposit (X} that is paying interest at a rate

r per year. At the end of time period (T}, the amount in the bank account will have grown to

Y = (1 + r} TX

Dividing the above equation by (1 + r) T, the amount of funds Y promised T years hence is

worth

and if we define the discount factor

then this becomes

X =flTy.

X is called the "present value" of Y.

In the decision tree analysis programs, when the value and cost of a node are calculated, the

values and costs of its successor nodes are discounted by the discount factors _v and /_c,

respectively. These factors can be varied to test sensitivity to time preference.

4-171



For the nominal data, several policies for cost andvalue discounting are given in Table 4-26.

In casesone through three, both costs andvalues were discounted by the same factor. Since

values of mission outcomes occur after the cost, this has the effect of lowering the values

relative to the costs. Caseone is simply a repeat of the nominal policy; VMAR, VOTVSF,

followed by VOVBL's. The discount factor of 0. 909in case two is equivalent to an interest

rate of 10percent. The result is that a VOLTV is substituted for the more costly VOTVSF

in 1973. The discount factor of 0. 833 in case three is equivalent to an interest rate of 20per-

cent. The result is the same as the case two policy with the addition of a stopping rule.

Thus the program can be stoppedafter the 1979mission (or even the 1977mission) if three

principal componentsof value (long term orbital operation, landed television, and life

detection experiments) have been achieved.

Table 4-26. Sensitivity of Optimal Decision Policy to Value and Cost Discounting

(Nominal Input Data and Dollar Evaluation)

Sensitivity Run 1 2 3
Number

tic 1.0 0. 909 0. 833

flv 1.0 0. 909 0. 833

Policy 1971: VMAR

1973: VOTVSF

1975-81: VOVBL

1971: VMAR

1973: VOLTV

1975-81: VOVBL

1971: VMAR

1973: VOLTV

1975-77 : VOVBL

1979-81: VSTOP if OOLORB

and COBITV

VOVBL otherwise

Expected Value 0. 692 0. 335" 0. 181 *

Expected Cost $5. 132B $3. 045B* $1. 993B*

*Discounted value and cost

Exercises discounting just value or just cost were not performed in the preliminary set of

exercises. Such exercises in combination with regional search analysis are another fruitful

area of investigation.
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4.12.2.4 Policy Sensitivity to Risk Preference {DECRAV)

Whenever outcomes are uncertain, there is risk involved in undertaking a project. It is, of

course, desirable to avoid unnecessary risk, but some "calculated" risk must be taken, for

the only way to avoid all risk is to cancel the project completely. A "fair gambler" would

evaluate a risky investment on an expected value basis; a risk-preferrer would evaluate the

risky investment higher than its expected value; and a risk-averter would evaluate the risky

investment lower than its expected value. It is useful to have a quantitative method of treating

various risk preferences in the decision process.

4.12.2.4.1 Theory of Risk Preference

The descriptor of risk aversion (or risk preference) is termed the risk aversion coefficient,

A. The more positive A, the more averse the decision-maker is to risk. Negative values of

A denote risk preference. A = 0 denotes neither risk preference or aversion; i. e., an

expected value decision-maker. For the Voyager decision analysis, the entire reasonable

spectrum of risk aversion can be covered by varying A from zero to 0.01 (in units of 1/million

dollars).

The basis for encoding risk perferences is the theory of utility and the generally accepted

exponential utility function

u(x)
-Ax

1-e

-A
1-e

where A is the risk aversion coefficient. This function is plotted for A = 0, 0.5, and 1.0 in

Figure 4-65. Simply stated, for positive values of A, this equation describes that the utility

the decision-maker attaches to a random variable (such as value) is not directly proportional

to the variable, but rather asymstatically approaches a limit (according to the given universe

exponential relationship) as the variable is increased.

The counterpart of expected value in risk aversion decision-making is the certainty equivalent.

In other words, at a decision node, the alternative with the highest certainty equivalent, rather

than the highest expected value, is selected. Depending upon the magnitude of A, this tends to bias

the decision process against those alternatives which lead to outcomes of high value but of low

probability of occurrence (i. e., the '_long-shot").
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Figure 4-65. Exponential UtilityFunction

Mathematically, at each change node, if x. are the values of the N possible outcomes and
I

p(i) is the probability function of i, then the certainty equivalent, x , is given by:

N - Ax.
.--, _-1 _n ]_ e x p(i)
x= A

i=l

For A = O, this expression reduces to

N

= Z x i p (i)
i=1

which is identically the expression for _, the expected value of x.

In the risk aversion analysis program (DECRAV), the foregoing equation is used to replace each

lottery on net value by its certainty equivalent. I_ecisions are then made by maximizing the

certainty equivalent of net value.
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As an example, consider the case of a 50-50 chance at a ,_1.00 prize; e. g., the chance to

guess the flip of a coin for a $1.00 prize. The expected value decision maker (A = 0) would

pay exactly 50 cents for this lottery. A risk averter would pay less according to his own

value of A; specifically, he would pay the certainty equivalent for his own value of A. Figure

4-66 is a plot of certainty equivalent as a function of A for this 50-50 chance at $1.00.

For example; a risk aversion coefficient of 1.0 (1/dollars) corresponds to a certainty

equivalent of 38 cents.

O. 70

0

0

Z

0

O. 60

O. 50

O. 40

0.30

0.20

-1.0 0.0 1.0 2.0

RISK AVERSION COEFFICIENT (1/DOLLARS)

Figure 4-66. Certainty Equivalent of a 50-50 Chance of $1.00 as a Function of the Risk

Aversion Coefficient A

4.12.2.4.2 Risk Sensitivity Exercises

The nominal data set was analyzed with the risk aversion program for several values of risk

aversion coefficient A: 0. 00001, 0. 0001, 0. 001, and 0.01 (in units of 1Anillion dollars).

When the actual exercises were carried out, the results of Table 4-27 were obtained.
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Since A = 0. 00001 represents little risk aversion, in case four, the policy is identical to the

nominal policy. In case five, a moderately risk averse case, the 1973 shot changes from a

VOTVSF to a VOLTV. Case six is strongly risk averse, and the policy contains many de-

cisions which depend on the previous outcomes in order to hedge against risk. Case seven

is so strongly risk averse that the best choice is not to start the project at all and be sure

of zero value and cost.

Case six demonstrates an interesting sequential policy. First a VMAR and a V2SIB are

selected for 1971 and 1973. Then, if the VMAR outcome is COATM, a VODTV and a VOLTV

are selected for 1975 and 1977, while otherwise a VODATM and a VODLTV are selected for

these launches. In any event, a VOLTV is selected for 1979. The selection for a 1981 launch

is a VOTVSF if the 1977 capsule outcome is COLAND; if it is COLTV, the 1981 launch is a

VOVBL; otherwise the 1981 launch is a VOLTV.

TABLE 4-27. SENSITIVITY OF OPTIMAL DECISION POLICY TO RISK AVERSION

(NOMINAL INPUT DATA AND DOLLAR EVALUATION)

Sensitivity Run 4a 5a
Number

A 0. 00001 0. 0001

Policy

Certainty

Equivalent

1971: VMAR

1973: VOTVSF

1975-81: VOVBL

$8. 666B

1971: VMAR

1973: VOLTV

1975-81: VOVBL

$8. 160B

Expected Value 0. 692 0. 682

Expected Cost $5,132B $4. 963B

6a 7a

0.001 0.01

1971: VMAR

1973: V2SIB

1975: VODATM if COZERO or CONOEN

VODTV if COATM

1977: VODLTV if COZERO or CONOEN

VOLTV otherwise

1979: VOLTV

1981: VOTVSF if COLAND

VOVBL if COLTV

VOLTV otherwise

$1.948B 0

0.520 0

$3.861B 0

1971: VSTOP
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4.12_ 2.5 Policy Sensitivity to Joint Time and Risk Preference (DECRAV with value

and cost discounting}

Time and risk preferences can be treated together by applying the methods of Subsections

4.12.2.3 and 4.12.2.4 simultaneously. The model was analyzed for sensitivity to joint time

and risk preference by using the risk aversion coefficients of the Subsection 4.12.2.4 (A =

0. 00001, 0. 0001, 0. 001, and 0.01} and by using two discount factors: 0. 909 (corresponding

to 10 percent}and 0. 833 (corresponding to 20 percent}. The value and cost discount factors

were always kept identical.

For the 0. 909 discount factor, the results of Table 4-28 were obtained. Because of the dis-

counting, the slightly risk averse case 4b selects VOLTV for 1973, rather than the nominal

VOTVSF, which agrees with the corresponding expected value policy. The moderately risk

averse case 5b uses the VODLTV in 1975 if the outcome of the 1971 launch is CONOEN; other-

wise a VOVBL is used. The strongly risk averse case 6b uses the V2SIB in 1973, and in 1975

again the configuration choice depends on the 1971 VMAR outcome. The remainder of this

policy is complicated. In the extremely risk averse case 7b the best decision is not to undertake

the project.

For a discount factor of 0. 833, the results of Table 4-29 were obtained. The slightly risk

averse case 4c now selects VSTOP when first a VOVBL achieves OOIX)RB and COBITV.

If this occurs before the last possible attempt in the project, one repeat VOVBL, which is

under construction when the VSTOP is selected, should be launched.

For the moderately risk averse case 5c, the policy progresses more slowly. It starts with

a VMAR followed by a V2SIB. In 1975 and 1977, a VOVBL is used only if the VMAR outcome

was COATM; otherwise a VODTV is selected. Then, VSTOP is selected as soon as a VOVBL

achieves both OOLORB and COBITV.

For moderate risk aversion (A = 0. 0001}, policies can be compared as a function of discount

rate. For no discounting (case 5a, Table 4-27), the policy is VMAR, VOLTV, followed by

VOVBL's. For a discount rate of 0.909 (case 5b, Table 4-28}, basically the same policy is
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used, except for a possible VODLTV in 1975. For a discount rate of 0. 833 (case 5c, Table

4-29), the policy changes markedly, starting with VMAR and V2SIB, followed by VOVBL's

if the VMAR achieves COATM, but otherwise a VODTV is in 1975 and 1977, then followed b)

VOVBL's. If a VOVBL achieves both OOLORB and COBITV, VSTOP is selected.

4.2.12.6 Launch Vehicle Redundancy

In this section, the tradeoff between a project employing one Saturn V at each (Saturn)

opportunity and one employing two Saturn V's at each opportunity is analyzed.

Figure 4-67 is a plot of the net expected value of the project as a function of Saturn V re-

liability for one and two Saturn V's per launch. Both input data and project evaluation were

held at nominal values in the runs of Figure 4-67, and the Saturn V launch vehicle reliabilit:

(PA4 of Table 4-6) was varied once above and once below its nominal value of 0.8.

It can be seen from the figure that the crossover in launch vehicle reliability (through

interplanetary injection) is at about 0.79 for nominal input data and project evaluation.

Above this reliability, the cost of the additional Saturn V does not seem to be merited by

its incremental increase in project value. Below it, two Saturn V's per opportunity would

seem preferable. This conclusion must, however, be qualified as tentative subject to

analysis of its sensitivity to input values, costs, and probabilities, and to the project

evaluation factor X.

Figure 4-67.
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4.13 CONCLUSIONS AND RECOMMENDATIONS

The objective of this effort was to develop a logical procedure for selecting Voyager mission

configurations which reflected technical feasibility, NASA project objectives, the economic

environment of the project, and was dynamically adaptive to project history. The treatment

of these factors on a quantitative basis provided an accurate language for communication. In

the course of this work, many discussions over value systems and probability assignments

were enhanced by the availability of this language.

This report presents the evolution of the mission configuration decision model from the under-

lying philosophy of decision analysis through a pilot phase and finally to the full-scale phase.

Illustrative results of the full-scale phase are presented in the Section 4.12.

The decision model results of the Section 4.12 utilize exclusively nominal probabilities, costs,

and values, as derived in Sections 4.8 through 4.10. No attempt was made to examine the

sensitivity of the resulting policies to variations in these three critical variables. In this re-

spect, the results of Section 4.12 and the implications must be considered preliminary in

nature.

Nevertheless, several trends in the results seem to be strong enough to draw a few general

conclusions:

First, for the nominal costs, probabilities, and (particularly) values previously discussed,

an ambitious unmanned Mars project seems to offer the highest return of expected value. In

1971, a Mariner flyby with an atmospheric probe (VMAR) is suggested. In 1973, large sur-

face landers with extensive television and physical experiment capability {VOTVSF) are pro-

posed. From 1975 through 1981, landers of the VBL class are desirable.

This project profile is not too different from the current (July 1967) NASA plan for Mariner/

Voyager Mars. Differences exist principally in the 1973 mission, in which NASA plans a

medium lander more of the VOLTV class, and in the addition of the 1981 mission.

4-181



Interestingly enough, if preference for risk aversion andvalue and cost discounting is added

to the decision procedure, policies even more similar to the unmannedMars project profile

result. The VOTVSF choice in 1973reverts to VOLTV, and the last mission of the series can

be earlier than 1981, provided that satisfactory outcomes havebeen realized.

Inference can be drawn from the results of the preceding section that the use of single non-

survivable capsules with Voyager spacecraft (VOATM and VODTV) is usually not desirable.

Dual capsule configurations (per spacecraft) with nonsurviving capsules, where the first cap-

sule enters prior to orbit insertion and the second after achieving orbit (i. e. VODATM,

VODDTV, and VODLTV), are occasionally recommended in tradeoff policies.

For Saturn V launch vehicle reliabilities (through interplanetary injection) above 0.8, multiple

Saturn V vehicles per opportunity do not seem to be justified economically. Since current SV

reliability estimates are usually greater than or equal to this figure, it would appear that a

project profile employing single Saturn V's per opportunity is the more desirable.

It is strongly recommended that further sensitivity analyses be performed on the decision

model. In particular, the sensitivity of the optimal policies to value apportionments, proba-

bility assessments, and project evaluation should be investigated in detail. Various trade-

off policies of lesser value and cost than the optimal policy should also be analyzed in detail

to obtain a more complete picture of the options available for project planning.

The natural continuation of this work is to further exercise and develop this decision-making

tool. In order to carry this out most profitably, it is important that NASA Voyager personnel

in responsible decision making positions, and their staff, become familiar with the potential

applications of this model. In this way, important feedback can be provided for further devel-

opment, and equally important understanding can be developed in NASA so that this decision

tool can ultimately be fully utilized.
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